Skip to main content
Log in

Adsorption behavior of antibiotic in soil environment: a critical review

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Antibiotics are used widely in human and veterinary medicine, and are ubiquitous in environment matrices worldwide. Due to their consumption, excretion, and persistence, antibiotics are disseminated mostly via direct and indirect emissions such as excrements, sewage irrigation, and sludge compost and enter the soil and impact negatively the natural ecosystem of soil. Most antibiotics are amphiphilic or amphoteric and ionize. A non-polar core combined with polar functional moieties makes up numerous antibiotic molecules. Because of various molecule structures, physicochemical properties vary widely among antibiotic compounds. Sorption is an important process for the environment behaviors and fate of antibiotics in soil environment. The adsorption process has decisive role for the environmental behaviors and the ultimate fates of antibiotics in soil. Multiply physicochemical properties of antibiotics induce the large variations of their adsorption behaviors. In addition, factors of soil environment such as the pH, ionic strength, metal ions, and organic matter content also strongly impact the adsorption processes of antibiotics. Review about adsorption of antibiotics on soil can provide a fresh insight into understanding the antibiotic-soil interactions. Therefore, literatures about the adsorption mechanisms of antibiotics in soil environment and the effects of environment factors on adsorption behaviors of antibiotics in soil are reviewed and discussed systematically in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei Y M, Zhang Y, Xu J, Guo C S, Li L, Fan W H. Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography-tandem mass spectrometry. Frontiers of Environmental Science & Engineering, 2014, 8(3): 357–371

    Article  CAS  Google Scholar 

  2. Li XW, Shi H C, Li K X, Zhang L, Gan Y P. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(6): 888–894

    Article  CAS  Google Scholar 

  3. Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: agents of subtle change. Environmental Health Perspectives, 1999, 107(6 Suppl 6): 907–938

    Article  CAS  Google Scholar 

  4. Golet E M, Xifra I, Siegrist H, Alder A C, Giger W. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology, 2003, 37(15): 3243–3249

    Article  CAS  Google Scholar 

  5. Halling-Sørensen B, Nors Nielsen S, Lanzky P F, Ingerslev F, Holten Lützhøft H C, Jørgensen S E. Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere, 1998, 36(2): 357–393

    Article  Google Scholar 

  6. Díaz-Cruz M S, López de Alda M J, Barceló D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 2003, 22(6): 340–351

    Article  Google Scholar 

  7. Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Research, 2007, 41(18): 4164–4176

    Article  CAS  Google Scholar 

  8. Boxall A B A, Kolpin D W, Halling-Sorensen B, Tolls J. Are veterinary medicines causing environmental risks? Environmental Science & Technology, 2003, 37(15): 286A–294A

    Article  CAS  Google Scholar 

  9. Göbel A, Thomsen A, McArdell C S, Joss A, Giger W. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology, 2005, 39(11): 3981–3989

    Article  Google Scholar 

  10. Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils-A review. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145–167

    Article  CAS  Google Scholar 

  11. Alder A C, McArdell C S, Golet E M, Ibric S, Molnar E, Nipales N S, Giger W. Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during wastewater treatment and in ambient waters in Switzerland. In: Daughton C G, Jones-Lepp T, Eds. Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues. Washington D C.: American Chemical Society, 2001, 56–69

    Chapter  Google Scholar 

  12. Boxall A B A, Blackwell P, Cavallo R, Kay P, Tolls J. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology Letters, 2002, 131(1–2): 19–28

    Article  CAS  Google Scholar 

  13. Hernando M D, Mezcua M, Fernández-Alba A R, Barceló D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 2006, 69(2): 334–342

    Article  CAS  Google Scholar 

  14. Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 2008, 8(1): 1–13

    Article  CAS  Google Scholar 

  15. Bailón-Pérez M I, Garcia-Campaña A M, Cruces-Blanco C, del Olmo Iruela M. Trace determination of β-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis. Journal of Chromatography. A, 2008, 1185(2): 273–280

    Article  Google Scholar 

  16. Chen Z H, Deng S B, Wei H R, Wang B, Huang J, Yu G. Activated carbons and amine-modified materials for carbon dioxide capture-A review. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326–340

    Article  CAS  Google Scholar 

  17. Li L, Xu J, Guo C S, Zhang Y. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture. Frontiers of Environmental Science & Engineering, 2013, 7(3): 382–387

    Article  CAS  Google Scholar 

  18. Peng Y, Li J H. Ammonia adsorption on graphene and graphene oxide: a first-principles study. Frontiers of Environmental Science & Engineering, 2013, 7(3): 403–411

    Article  CAS  Google Scholar 

  19. Zhou Q, Wang MQ, Li A M, Shuang C D, Zhang MC, Liu X H, Wu L Y. Preparation of a novel anion exchange group modified hypercrosslinked resin for the effective adsorption of both tetracycline and humic acid. Frontiers of Environmental Science & Engineering, 2013, 7(3): 412–419

    Article  CAS  Google Scholar 

  20. Kümmerer K. Antibiotics in the aquatic environment: a review-Part I. Chemosphere, 2009, 75(4): 417–434

    Article  Google Scholar 

  21. Petrović M, Hernando M D, Díaz-Cruz M S, Barceló D. Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. Journal of Chromatography. A, 2005, 1067(1–2): 1–14

    Article  Google Scholar 

  22. Ikehata K, Naghashkar N J, El-Din M G. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Science and Engineering, 2006, 28(6): 353–414

    Article  CAS  Google Scholar 

  23. Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 2009, 35(2): 402–417

    Article  CAS  Google Scholar 

  24. Erkel G. Biochemie der Antibiotika: Struktur-Biosynthese-Wirk Mechanismus. Heidelberg: Spektrum Akademischer Verlag, 1992, 389

    Google Scholar 

  25. Halling-Sørensen B, Sengeløv G, Tjørnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263–271

    Article  Google Scholar 

  26. Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography. A, 2000, 882(1–2): 109–133

    Article  CAS  Google Scholar 

  27. Mitscher L A. The Chemistry of the Tetracycline Antibiotics. Basel: Marcel Dekker, 1978, 330

  28. Ingerslev F, Halling-Sørensen B. Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry, 2000, 19(10): 2467–2473

    Article  CAS  Google Scholar 

  29. Wetzstein H G. Biologische abbaubarkeit der gyrasehemmer. Pharmazie in Unserer Zeit, 2001, 30(5): 450–457

    Article  CAS  Google Scholar 

  30. Xu Z, Zhang Q, Fang H H P. Applications of porous resin sorbents in industrial wastewater treatment and resource recovery. Critical Reviews in Environmental Science and Technology, 2003, 33(4): 363–389

    Article  CAS  Google Scholar 

  31. Xu W H, Zhang G, Zou S C, Li X D, Liu Y C. Determination of selected antibiotics in the Victoria Harbor and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 2007, 145(3): 672–679

    Article  CAS  Google Scholar 

  32. Sun Y, Huang H, Sun Y, Wang C, Shi X L, Hu H Y, Kameya T, Fujie K. Occurrence of estrogenic endocrine disrupting chemicals concern in sewage plant effluent. Frontiers of Environmental Science & Engineering, 2014, 8(1): 18–26

    Article  CAS  Google Scholar 

  33. Sui Q, Huang J, Lu S G, Deng S B, Wang B, Zhao WT, Qiu Z F, Yu G. Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. Frontiers of Environmental Science & Engineering, 2014, 8(1): 62–68

    Article  CAS  Google Scholar 

  34. Rao K F, Li N, Ma M, Wang Z J. In vitro agonistic and antagonistic endocrine disrupting effects of organic extracts from waste water of different treatment processes. Frontiers of Environmental Science & Engineering, 2014, 8(1): 69–78

    Article  CAS  Google Scholar 

  35. Liu C L, Xu Y P, Ma M, Huang B B, Wu J D, Meng Q Y, Wang Z J, Gearheart R A. Evaluation of endocrine disruption and dioxin-like effects of organic extracts from sewage sludge in autumn in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(3): 433–440

    Article  Google Scholar 

  36. Höper H, Kues J, Nau H, Hamscher G. Eintrag und verbleib von tierarzneimittelwirkstoffen in Böden. Bodenschutz, 2002, 4(2): 141–148

    Google Scholar 

  37. Hamscher G, Sczesny S, Höper H, Nau H. Tierarzneimittel als persistente organische Kontaminanten von Böden. 10 Jahre Boden-Dauerbeobachtung in Niedersachsen, 2001, 10

  38. Sengeløv G, Agerso Y, Halling-sørensen B, Baloda S B, Andersen J S, Jensen L B. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environment International, 2003, 28(7): 587–595

    Article  Google Scholar 

  39. Winckler C, Grafe A. Stoffeintrag Durch Tierarzneimittel und Pharmakologisch Wirksame Fuutterzusatzstoffe unter Besonderer Berücksichtigung von Tetrazyklinen. Berlin: UBA-Texte 44/00, 2000, 145

  40. Schüller S. Anwendung antibiotisch wirksamer Substanzen beim Tier und Beurteilung der Umweltsicherheit entsprechender Produkte.3. Statuskolloquium ökotoxikologischer Forschungen in der Euregio Bodensee, 1998

    Google Scholar 

  41. Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 2010, 158(9): 2992–2998

    Article  CAS  Google Scholar 

  42. Hamscher G, Abuquare S, Sczesny S, Höper H, Nau H. Determination of Tetracyclines in Soil and Water Samples from Agricultural Areas in Lower Saxony. Veldhoven, NL: Presented at Euro Residue IV, 2000

    Google Scholar 

  43. Kolpin D W, Meyer M T, Barber L B, Zaugg S D, Furlong E T, Buxton H T. A national reconnaissance for antibiotics and hormones in streams of the United States. Presented at SETAC 21st Annual Meeting in North America, Nashville, TN, November 12–16, 2000

    Google Scholar 

  44. Tolls J. Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science & Technology, 2001, 35(17): 3397–3406

    Article  CAS  Google Scholar 

  45. Sassman S A, Lee L S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science & Technology, 2005, 39(19): 7452–7459

    Article  CAS  Google Scholar 

  46. Jones A D, Bruland G L, Agrawal S G, Vasudevan D. Factors influencing the sorption of oxytetracycline to soils. Environmental Toxicology and Chemistry, 2005, 24(4): 761–770

    Article  CAS  Google Scholar 

  47. Pils J R V, Laird D A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, andclay-humic complexes. Environmental Science & Technology, 2007, 41(6): 1928–1933

    Article  CAS  Google Scholar 

  48. Nowara A, Burhenne J, Spiteller M. Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1459–1463

    Article  CAS  Google Scholar 

  49. Accinelli C, Koskonen W C, Becker J M, Sadowsky M J. Environmental fate of two sulfonamide antimicrobial agents in soils. Journal of Agricultural and Food Chemistry, 2007, 55(7): 2677–2682

    Article  CAS  Google Scholar 

  50. Rabølle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline, and tylosin in soil. Chemosphere, 2000, 40(7): 715–722

    Article  Google Scholar 

  51. Figueroa R A, Mackay A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environmental Science & Technology, 2005, 39(17): 6664–6671

    Article  CAS  Google Scholar 

  52. Sithole B B, Guy R D. Models for oxytetracycline in aquatic environments. 1. Interaction with bentonite clay systems.Water, Air, and Soil Pollution, 1987, 32(3–4): 303–314

    Article  CAS  Google Scholar 

  53. Gruber V F, Halley B A, Hwang S G, Ku C C. Mobility of avermectin B1a in soil. Journal of Agricultural and Food Chemistry, 1990, 38(3): 886–890

    Article  CAS  Google Scholar 

  54. Kay P, Blackwell P A, Boxall A B. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry, 2004, 23(5): 1136–1144

    Article  CAS  Google Scholar 

  55. Zhang H, Huang C H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 2007, 66(8): 1502–1512

    Article  CAS  Google Scholar 

  56. Gu C, Karthikeyan K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(23): 9166–9173

    Article  CAS  Google Scholar 

  57. Figueroa R A, Leonard A, Mackay A A. Modeling tetracycline antibiotic sorption to clays. Environmental Science & Technology, 2004, 38(2): 476–483

    Article  CAS  Google Scholar 

  58. MacKay A A, Canterbury B. Oxytetracycline sorption to organic matter by metal-bridging. Journal of Environmental Quality, 2005, 34(6): 1964–1971

    Article  CAS  Google Scholar 

  59. Wessels J M, Ford W E, Szymczak W, Schneider S. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: A spectroscopic study. Journal of Physical Chemistry B, 1998, 102(46): 9323–9331

    Article  CAS  Google Scholar 

  60. Gu C, Karthikeyan K G, Sibley S D, Pedersen J A. Complexation of the antibiotic tetracycline with humic acid. Chemosphere, 2007, 66(8): 1494–1501

    Article  CAS  Google Scholar 

  61. Sibley S D, Pedersen J A. Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid. Environmental Science & Technology, 2008, 42(2): 422–428

    Article  CAS  Google Scholar 

  62. Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science & Technology, 2005, 39(24): 9509–9516

    Article  CAS  Google Scholar 

  63. Kahle M, Stamm C. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environmental Science & Technology, 2007, 41(1): 132–138

    Article  CAS  Google Scholar 

  64. Bialk HM, Pedersen J A. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances. Environmental Science & Technology, 2008, 42(1): 106–112

    Article  CAS  Google Scholar 

  65. Yeager R L, Halley B A. Sorption/desorption of [14C]efrotomycin with soils. Journal of Agricultural and Food Chemistry, 1990, 38(3): 883–886

    Article  CAS  Google Scholar 

  66. Lützhøft H C H, Vaes W H J, Freidig A P, Halling-Sørensen B, Hermens J L M. 1-Octanol/water distribution coefficient of oxolinic acid: influence of pH and its relation to the interaction with dissolved organic carbon. Chemosphere, 2000, 40(7): 711–714

    Article  Google Scholar 

  67. Porubcan L S, Serna C J, White J L, Hem S L. Mechanism of adsorption of clindamycin and tetracycline by montmorillonite. Journal of Pharmaceutical Sciences, 1978, 67(8): 1081–1087

    Article  CAS  Google Scholar 

  68. Gu C, Karthikeyan K G. Interaction of tetracycline with aluminum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(8): 2660–2667

    Article  CAS  Google Scholar 

  69. Tolls J, Gebbink W, Cavallo R. pH-dependence of sulfonamide antibiotic sorption: data and model evaluation. SETAC Europe 12th Annual Meeting, Vienna, Austria. Madison: Amer Soc Agronomy, 2002, 12–16

  70. Sithole B B, Guy R D. Models for oxytetracycline in aquatic environments. 2. Interactions with humic substances. Water, Air, and Soil Pollution, 1987, 32(3–4): 315–321

    Article  CAS  Google Scholar 

  71. Loke M L, Tjørnelund J, Halling-Sørensen B. Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 2002, 48(3): 351–361

    Article  CAS  Google Scholar 

  72. Lertpaitoonpan W, Ong S K, Moorman T B. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere, 2009, 76(4): 558–564

    Article  CAS  Google Scholar 

  73. Zhang J Q, Dong Y H. Influence of strength and special of cation on adsorption of norfloxacin in typical soils of China. Environmental Sciences, 2007, 28(10): 2383–2388 (in Chinese)

    CAS  Google Scholar 

  74. Picó Y, Andreu V. Fluoroquinolones in soil-risks and challenges. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1287–1299

    Article  Google Scholar 

  75. Wang Y J, Jia D A, Sun R J, Zhu H W, Zhou D M. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environmental Science & Technology, 2008, 42(9): 3254–3259

    Article  CAS  Google Scholar 

  76. Marengo J R, Kok R A, O’Brien K, Velagaleti R R, Stamm J M. Aerobic biodegradation of (14C)-sarafloxacin hydrochloride in soil. Environmental Toxicology and Chemistry, 1997, 16(3): 462–471

    Article  CAS  Google Scholar 

  77. Kulshrestha P, Giese R F Jr, Aga D S. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science & Technology, 2004, 38(15): 4097–4105

    Article  CAS  Google Scholar 

  78. Holten Lűtzhøft H C, Vaes Wouter H J, Freidig Andreas P, Halling-Sørensen B, Hermens Joop L M. Influence of pH and other modifying factors on the distribution behavior of 4-quinolones to solid phases and humic acids studied by “negligible depletion” SPME-HPLC. Environmental Science & Technology, 2000, 34(23): 4989–4994

    Article  Google Scholar 

  79. Carrasquillo A J, Bruland G L, MacKay A A, Vasudevan D. Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environmental Science & Technology, 2008, 42(20): 7634–7642

    Article  CAS  Google Scholar 

  80. Zhang M K, Wang L P, Zheng S A. Adsorption and transport characteristics of two exterior-source antibiotics in some agricultural soils. Acta Ecologica Sinica, 2008, 28(2): 761–766 (in Chinese)

    CAS  Google Scholar 

  81. Ter Laak T L, Gebbink W A, Tolls J. Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environmental Toxicology and Chemistry, 2006, 25(4): 933–941

    Article  Google Scholar 

  82. Thiele S, Seibicke T, Leinweber P. Sorption of sulfonamide antibiotic pharmaceuticals in soil particle size fractions. SETAC Europe 12th Annual Meeting, Vienna, Austria. Madison: Amer Soc Agronomy, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, H. Adsorption behavior of antibiotic in soil environment: a critical review. Front. Environ. Sci. Eng. 9, 565–574 (2015). https://doi.org/10.1007/s11783-015-0801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0801-2

Keywords

Navigation