Skip to main content
Log in

Flow and natural convection heat transfer characteristics of non-Newtonian nanofluid flow bounded by two infinite vertical flat plates in presence of magnetic field and thermal radiation using Galerkin method

Galerkin 法研究磁场和热辐射作用下的非牛顿纳米流体在垂直平板间的流动和自然对流换热特性

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field and thermal radiation. Initially, a similarity transformation is used to convert momentum and energy conservation equations in partial differential forms into non-linear ordinary differential equations (ODE) applying meaningful boundary conditions. In order to obtain the non-linear ODEs analytically, Galerkin method (GM) is employed. Subsequently, the ODEs are also solved by a reliable numerical solution. In order to test the accuracy, precision and reliability of the analytical method, results of the analytical analysis are compared with the numerical results. With respect to the comparisons, fairly good compatibilities with insignificant errors are observed. Eventually, the impacts of effective parameters including magnetic and radiation parameters and nanofluid volume fraction on the velocity, skin friction coefficient and Nusselt number distributions are comprehensively described. Based on the results, it is revealed that with increasing the role of magnetic force, velocity profile, skin friction coefficient and thermal performance descend. Radiation parameter has insignificant influence on velocity profile while it obviously has augmentative and decreasing effects on skin friction and Nusselt number, respectively.

摘要

研究了在磁场和热辐射作用下, 非牛顿纳米流体在两个无限大的垂直平板间流动的自然对流换 热和流动特性。首先, 采用相似变换法, 将偏微分形式的动量和能量守恒方程转化为特殊边界条件下 的非线性常微分方程组。应用Galerkin 方法(GM), 获得非线性常微分方程组的解析解, 并给出了非线 性常微分方程组的数值解。对比分析解析解和数值解, 验证了模型的准确性、精度和可靠性。最后, 综合考虑了磁场、辐射参数和纳米流体体积分数等参数对速度、摩擦阻力系数和 Nusselt 数分布的影 响。结果表明, 随着磁力作用的增大, 速度场、摩擦阻力系数和热性能下降。辐射参数虽然对增强的 速度场影响不大, 但降低了摩擦阻力系和 Nusselt 数的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XIANG Jian-hua, ZHANG Chun-liang, ZHOU Chao, LIU Gui-yun, ZHOU Wei. Heat transfer performance testing of a new type of phase change heat sink for high power light emitting diode [J]. Journal of Central South University, 2018, 25(7): 1708–1716.

    Article  Google Scholar 

  2. WANG W H, CHENG D L, LIU T, LIU Y H. Performance comparison for oil-water heat transfer of circumferential overlap trisection helical baffle heat exchanger [J]. Journal of Central South University, 2016, 23(10): 2720–2727.

    Article  Google Scholar 

  3. MAGHSOUDI P, SIAVASHI M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 947–961. DOI: https://doi.org/10.1007/s10973-018-7335-3.

    Article  Google Scholar 

  4. MOSAYEBIDORCHEH S, RAHIMI-GORJI M, GANJI D D, MOAYEBIDORCHEH T, POURMEHRAN O, BIGLARIAN M. Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM [J]. Journal of Central South University, 2017, 24(3): 675–682. DOI: https://doi.org/10.1007/s11771-017-3468-y.

    Article  Google Scholar 

  5. XIE Nan, JIANG Chang-wei, HE Yi-hai, YAO Ming. Lattice Boltzmann method for thermomagnetic convection of paramagnetic fluid in square cavity under a magnetic quadrupole field [J]. Journal of Central South University, 2017, 24(5): 1174–1182. DOI: https://doi.org/10.1007/s11771-017-3520-y.

    Article  Google Scholar 

  6. SHEIKHOLESLAMI M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion [J]. Journal of Molecular Liquids, 2018, 249: 921–929.

    Article  Google Scholar 

  7. SHEIKHOLESLAMI M, JAFARYAR M, SALEEM S, LI Z, SHAFEE A, JIANG Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators [J]. International Journal of Heat and Mass Transfer, 2018, 126: 156–163.

    Article  Google Scholar 

  8. FENG Jun-sheng, DONG Hui, GAO Jian-ye, LIU Jing-yu, LIANG Kai. Theoretical and experimental investigation on vertical tank technology for sinter waste heat recovery [J]. Journal of Central South University, 2017, 24(10): 2281–2287. DOI: https://doi.org/10.1007/s11771-017-3639-x.

    Article  Google Scholar 

  9. MCCABE W L, SMITH J C, HARRIOTT P. Unit operations of chemical engineering [M]. New York: McGraw-hill, 1993.

    Google Scholar 

  10. AHMED A, NADEEM S. Biomathematical study of time dependent flow of a Carreau nanofluid through inclined catheterized arteries with overlapping stenosis [J]. Journal of Central South University, 2017, 24(11): 2725–2744. DOI: https://doi.org/10.1007/s11771-017-3685-4.

    Article  Google Scholar 

  11. SHEIKHOLESLAMI M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM [J]. Journal of Molecular Liquids, 2018, 263: 472–488. DOI: https://doi.org/10.1016/j.molliq.2018.04.111.

    Article  Google Scholar 

  12. SHEIKHOLESLAMI M, ROKNI H B. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 419–430.

    Article  MathSciNet  Google Scholar 

  13. SHEIKHOLESLAMI M, VAJRAVELU K. Nanofluid flow and heat transfer in a cavity with variable magnetic field [J]. Applied Mathematics and Computation, 2017, 298: 272–282.

    Article  MathSciNet  MATH  Google Scholar 

  14. MAJID S, MOHAMMAD J. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(8): 1850–1865. DOI: https://doi.org/10.1007/s11771-017-3593-7.

    Article  Google Scholar 

  15. DOGONCHI A S, DIVSALAR K, GANJI D D. Flow and heat transfer of MHD nanofluid between parallel plates in the presence of thermal radiation [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 58–76.

    Article  MathSciNet  Google Scholar 

  16. DOGONCHI A S, GANJI D D. Thermal radiation effect on the nano-fluid buoyancy flow and heat transfer over a stretching sheet considering Brownian motion [J]. Journal of Molecular Liquids, 2016, 223: 521–527.

    Article  Google Scholar 

  17. DOGONCHI A S, GANJI D D. Impact of Cattaneo-Christov heat flux on MHD nanofluid flow and heat transfer between parallel plates considering thermal radiation effect [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 52–63.

    Article  Google Scholar 

  18. CHAMKHA A J. Flow of non-Newtonian particulate suspension with a compressible particle phase [J]. Mechanics Research Communications, 1994, 21(6): 645–654.

    Article  MATH  Google Scholar 

  19. ELLAHI R, RAZA M, VAFAI K. Series solutions of non-Newtonian nanofluids with Reynolds’ model and Vogel’s model by means of the homotopy analysis method [J]. Mathematical and Computer Modelling, 2012, 55(7, 8): 1876–1891.

    Article  MathSciNet  MATH  Google Scholar 

  20. BRUCE R W, NA T Y. Natural convection flow of Powell-Eyring fluids between two vertical flat plates [M]. ASME, 1967.

    Google Scholar 

  21. MAHMOUD M A. Slip velocity effect on a non-Newtonian power-law fluid over a moving permeable surface with heat generation [J]. Mathematical and Computer Modelling, 2011, 54(5, 6): 1228–1237.

    Article  MathSciNet  MATH  Google Scholar 

  22. JOHNSTON P R. A solution method for the Graetz problem for non-Newtonian fluids with Dirichlet and Neumann boundary conditions [J]. Mathematical and Computer Modelling, 1994, 19(2): 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  23. CHEN H T. Free convection flow of non-Newtonian fluids along a vertical plate embedded in a porous medium [J]. Journal of Heat Transfer (Transactions of the ASME, American Society of Mechanical Engineers United States), Series C, 1988, 110(1): 257–260.

    Article  Google Scholar 

  24. RAJAGOPAL K R, NA T Y. Natural convection flow of a non-Newtonian fluid between two vertical flat plates [J]. Acta Mechanica, 1985, 54(3, 4): 239–246.

    Article  MATH  Google Scholar 

  25. DOMAIRRY D, SHEIKHOLESLAMI M, ASHORYNEJAD H R, GORLA R S, KHANI M. Natural convection flow of a non-Newtonian nanofluid between two vertical flat plates [J]. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2011, 225(3): 115–122.

    Google Scholar 

  26. PITTMAN J F, RICHARDSON J F, SHERRARD C P. An experimental study of heat transfer by laminar natural convection between an electrically-heated vertical plate and both Newtonian and non-Newtonian fluids [J]. International Journal of Heat and Mass Transfer, 1999, 42(4): 657–671.

    Article  MATH  Google Scholar 

  27. HATAMI M, GANJI D D. Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods [J]. Case Studies in Thermal Engineering, 2014, 2: 14–22.

    Article  Google Scholar 

  28. TERNIK P, RUDOLF R. Laminar natural convection of non-Newtonian nanofluids in a square enclosure with differentially heated side walls [J]. International Journal of Simulation Modelling, 2013, 12(1): 5–16.

    Article  Google Scholar 

  29. SHEIKHOLESLAMI M, NIMAFAR M, GANJI D D. Nanofluid heat transfer between two pipes considering Brownian motion using AGM [J]. Alexandria Engineering Journal, 2017, 56(2): 277–283.

    Article  Google Scholar 

  30. HATAMI M, HATAMI J, GANJI D D. Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel [J]. Computer Methods and Programs in Biomedicine, 2014, 113(2): 632–641.

    Article  Google Scholar 

  31. RAPTIS A. Radiation and free convection flow through a porous medium [J]. International Communications in Heat and Mass Transfer, 1998, 25(2): 289–295.

    Article  MathSciNet  Google Scholar 

  32. SIAVASHI M, RASAM H, IZADI A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink [J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 1399–1415. DOI: https://doi.org/10.1007/s10973-018-7540-0.

    Article  Google Scholar 

  33. SARI M R, KEZZAR M, ADJABI R. Heat transfer of copper/water nanofluid flow through converging-diverging channel [J]. Journal of Central South University, 2016, 23(2): 484–496.

    Article  Google Scholar 

  34. HATAMI M, SHEIKHOLESLAMI M, GANJI D D. Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall [J]. Journal of Molecular Liquids, 2014, 195: 230–239.

    Article  Google Scholar 

  35. DOGONCHI A S, ISMAEL M A, CHAMKHA A J, GANJI D D. Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall [J]. Journal of Thermal Analysis and Calorimetry, 2018, 135(6): 3485–3497. DOI: https://doi.org/10.1007/s10973-018-7520-4.

    Article  Google Scholar 

  36. HATAMI M, GANJI D D. Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods [J]. Case Studies in Thermal Engineering, 2014, 2: 14–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Shahriari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghsoudi, P., Shahriari, G., Rasam, H. et al. Flow and natural convection heat transfer characteristics of non-Newtonian nanofluid flow bounded by two infinite vertical flat plates in presence of magnetic field and thermal radiation using Galerkin method. J. Cent. South Univ. 26, 1294–1305 (2019). https://doi.org/10.1007/s11771-019-4088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4088-5

Key words

关键词

Navigation