Skip to main content
Log in

Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Polyamines are amine-containing, low molecular weight, and ubiquitous polycationic molecules present in almost all cells and free-living microbes, which are formed by aliphatic hydrocarbons replaced with multiple amino groups. They have been considered as a new kind of plant biostimulant, which play vital roles in diverse plant growth and developmental processes, and environmental stress responses. However, little is known regarding the effects of polyamines specifically on the elicitation of bioactive compounds in medicinal plant production. Therefore, in this review, we attempt to cover these gaps of information. Supply of polyamines, whether by exogenous application or through genetic engineering, could positively affect medicinal plant growth, productivity, and stress tolerance; however, these effects depend on type and dose of polyamine application and plant species. Furthermore, polyamines play as precursor for the several groups of alkaloids (pyrrolizidine, tropane, and quinolizidine alkaloids) and phenolamides, so these bioactive compounds could significantly increase the concentration of the above-mentioned natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

AIH:

Agmatine iminohydrolase

Cad:

Cadaverine

SAM:

S-Adenosylmethionine

SAMDC:

SAM decarboxylase

CPA:

N-Carbamoylputrescine amidohydrolase

DAO:

Diamine oxidases

DAP:

1,3-Diaminopropane

eIF5A:

Eukaryotic translation initiation factor 5A

GABA:

γ-Aminobutyric acid

H6H:

Hyoscyamine 6β-hydroxylase

JA:

Jasmonate

LDC:

Lysine decarboxylase

NO:

Nitric oxide

ODC:

Ornithine decarboxylase

PA:

Polyamine

PAO:

Polyamine oxidases

PDH:

Pyrroline dehydrogenase

PMT:

Putrescine N-methyltransferase

Pro:

Proline

Put:

Putrescine

Spd:

Spermidine

SPDS:

Spermidine synthase

SPMS:

Spermine synthase

Spm:

Spermine

TGase:

Transglutaminase

References

  • Abd El Wahed MA, Gamal El Din KM (2004) Stimulation effect of spermidine and stigmasterol on growth, flowering, biochemical constituents and essential oil of chamomile plant (Chamomilla recutita L., Rausch). Bulg J Plant Physiol 30:48–60

    CAS  Google Scholar 

  • Ahmad S, Ahmad R, Ashraf MY, Waraich EA (2009) Sunflower (Helianthus annuus L.) response to drought stress at germination and growth stages. Pak J Bot 41:647–654

    Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patrón M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Knocz C, Carrasco P, Tiburcio AF (2010a) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J (2010b) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous arginine decarboxylase2 gene. Plant Physiol Biochem 48:547–552

    Article  PubMed  CAS  Google Scholar 

  • Ali RM, Abbas HM, Kamal RK (2007) The effects of treatment with polyamines on dry matter and oil and flavonoid contents in salinity stressed chamomile and sweet marjoram. Plant Soil Environ 55(11):477–483

    Article  Google Scholar 

  • Ali RM, Abbas HM, Kamal RK (2009) The effects of treatment with polyamines on dry matter and some metabolites in salinity–stressed chamomile and sweet marjoram seedlings. Plant Soil Environ 55(11):477–483

    Article  CAS  Google Scholar 

  • Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S (2016) Polyamines in pollen: from microsporogenesis to fertilization. Front Plant Sci 7:155. https://doi.org/10.3389/fpls.2016.00155

    Article  PubMed  PubMed Central  Google Scholar 

  • Alsokari SS (2011) Synergistic effect of kinetin and spermine on some physiological aspects of seawater stressed Vigna sinensis plants. Saudi J Biol Sci 18:37–44

    Article  PubMed  CAS  Google Scholar 

  • Amin AA, Fatma AE, Ghrib M, El-awadi M, Rashed ESM (2011) Physiological response of onion plants to foliar application of putrescine and glutamine. Sci Hort 129(3):353–360

    Article  CAS  Google Scholar 

  • Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A (2010) Plant amine oxidases ‘on the move’: an update. Plant Physiol Biochem 48:560–564.

    Article  PubMed  CAS  Google Scholar 

  • Anwar R, Mattoo AK, Handa AK (2015) Polyamine interactions with plant hormones: crosstalk at several levels. In: Kusano T, Suzuki H (eds) Polyamines. Springer, Japan, pp 267–304

    Google Scholar 

  • Apelbaum A, Burgoon AC, Anderson JD, Lieberman M, Ben-Arie R, Mattoo AK (1985) Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol 68:453–456

    Article  Google Scholar 

  • Arena ME, Pastur GM, Benavides MP, Curvetto N (2005) Polyamines and inhibitors used in successive culture media for in vitro rooting in Berberis buxifolia. N Z J Bot 43(2):373–380

    Article  Google Scholar 

  • Astarita LV, Handro W, Floh EIS (2003) Changes in polyamines content associated with zygotic embryogenesis in the Brazilian pine, Araucaria angustifolia (Bert.) O. Ktze. Rev Braz J Bot 26:163–168

    Article  CAS  Google Scholar 

  • Ayad HS, Reda F, Abdalla MSA (2010) Effect of putrescine and zinc on vegetative growth, photosynthetic pigments, lipid peroxidation and essential oil content of geranium (Pelargonium graveolens L.). World J Agri Sci 6:601–608

    CAS  Google Scholar 

  • Bais HP, Ravishankar GA (2003) Synergistic effect of auxins and polyamines in hairy roots of Cichorium intybus L. during growth, coumarin production and morphogenesis. Acta Physiol Plant 25:193–220

    Article  CAS  Google Scholar 

  • Bais HP, George J, Ravishankar GA (1999) Influence of polyamines on growth of hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow Local) and formation of coumarins. J Plant Growth Regul 18:33–37

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Madhusudhan R, Bhagyalakshmi N, Rajasekaran T, Ramesh BS, Ravishankar GA (2000) Influence of polyamines on growth and formation of secondary metabolites in hairy root cultures of Beta vulgaris and Tagetes patula. Acta Physiol Plant 22(2):151–158

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bassard J-E, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochem 71:1808–1824

    Article  CAS  Google Scholar 

  • Bhattacharya E, Rajam MV (2007) Polyamine biosynthetic pathway: a potential target for enhancing alkaloid production. In: Verpoorte R, Alfermann AW, Johnson TS (eds) Applications of plant metabolic engineering. Springer, Netherlands, pp 129–144

    Chapter  Google Scholar 

  • Biondi S, Scaramagli S, Capitani F, Altamura MM, Torrigiani P (2001) Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J Exp Bot 52:231–242

    Article  PubMed  CAS  Google Scholar 

  • Bitrián M, Zarza X, Altabella T, Tiburcio AF, Alcázar R (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2:516–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hortic Sci 21:1105–1112

    Google Scholar 

  • Burrell M, Hanfrey CC, Murray EJ, Stanley-Wall NR, Michael AJ (2010) Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation. J Biol Chem 285(50):39224–39238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:990–991

    Article  Google Scholar 

  • Carman JG, Rodney GR, Fuller J, Ghermay T, Timmis R (2005) Nutrient and hormone levels in Douglas-fir corrosion cavities, megagametophytes, and embryos during embryony. Can J For Res 35:2447–2456

    Article  CAS  Google Scholar 

  • Chae SC (2016) Shoot organogenesis of Echinacea angustifolia DC as influenced by polyamines. LifeSci 13(1):16–19

    CAS  Google Scholar 

  • Chen H, Jones AD, Howe GA (2006) Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett 580:2540–2546

    Article  PubMed  CAS  Google Scholar 

  • Chen LF, Lu W, Sun J, Guo SR, Zhang ZX, Yang YJ (2011) Effects of exogenous spermidine on photosynthesis and carbohydrate accumulation in roots and leaves of cucumber (Cucumis sativus L.) seedlings under salt stress. J Nanjing Agri Univ 34(3):31–36

    Google Scholar 

  • Chriqui D, D’Orazi D, Bagni N (1986) Ornithine and arginine decarboxylases and polyamine involvement during in vivo differentiation of Datura innoxia leaf explant. Physiol Planta 68:589–596

    Article  CAS  Google Scholar 

  • Couee I, Hummel I, Sulmon C, Gouesbet G, El Amrani A (2004) Involvement of polyamines in root development. Plant Cell Tissue Organ Cult 76:1–10

    Article  CAS  Google Scholar 

  • Del Duca S, Serafini-Fracassini D, Cai G (2014) Senescence and programmed cell death in plants: polyamine action mediated by trans-glutaminase. Front Plant Sci 5:1–17

    Google Scholar 

  • Dey A, Gupta K, Gupta B (2014) Role of polyamines in plant–pathogen interactions. In: Anjum NA, Gill SS, Gil R (eds) Plant adaptation to environmental change. CAB International, USA, pp 222–244

    Google Scholar 

  • Dias LLC, Santa-Catarina C, Silveira V, Pieruzzi FP, Floh EIS (2009) Polyamines, amino acids, IAA and ABA contents during Ocotea catharinensis seed germination. Seed Sci Technol 37:42–51

    Article  Google Scholar 

  • Do PT, Degenkolbe T, Erban A, Heyer AG, Kopka J, Karin IK, Hincha DK, Ellen Z (2013) Dissecting rice polyamine metabolism under controlled long-term drought stress. PLOS One 8(4):44–54

    Article  CAS  Google Scholar 

  • Drager B (2004) Chemistry and biology of calystegines. Nat Prod Rep 21:211–223

    Article  PubMed  Google Scholar 

  • Edreva AM, Velikova VB, Tsonev TD (2007) Phenylamides in plants.Russ. J Plant Physiol 54:287–301

    CAS  Google Scholar 

  • El-Yazal MAS, Rady MM (2012) Changes in nitrogen and polyamines during breaking bud dormancy in “Anna” apple trees with foliar application of some compounds. Sci Hort 136:75–80

    Article  CAS  Google Scholar 

  • Fait A, Nesi AN, Angelovici R, Lehmann M, Pham PA, Song L, Haslam RP, Napier JA, Galili G, Fernie AR (2011) Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon–nitrogen balance and storage reserves in a development-dependent manner. Plant Physiol 157:1026–1042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009a) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farooq M, Wahid A, Lee DJ (2009b) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937–945

    Article  CAS  Google Scholar 

  • Farooq M, Aziz T, Rehman A, Cheema SA, Rehman H (2011) Evaluating surface drying and re-drying for wheat seed priming with polyamines: effects on emergence, early seedling growth and starch metabolism. Acta Physiol Plant 33:1707–1713

    Article  CAS  Google Scholar 

  • Fecker LF, Rugenhagen C, Berlin J (1993) Increased production of cadaverine and anabasine in hairy root cultures of Nicotiana tabacum expressing a bacterial lysine decarboxylase gene. Plant Mol Biol 23:11–21

    Article  PubMed  CAS  Google Scholar 

  • Ferreira MI, Uliana MR, Costa SM, Magro M, Vianello F, Ming LC, Lima GPP (2016) Exclusion of solar UV radiation increases the yield of curcuminoid in Curcuma longa L. Ind Crops Prod 89:188–194

    Article  CAS  Google Scholar 

  • Flores HE, Galston AW (1982) Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science 217:1259–1261

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5(1):26–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graser G, Hartmann T (2000) Biosynthesis of spermidine, a direct precursor of pyrrolizidine alkaloids in root cultures of Senecio vulgaris L. Planta 211:239–245

    Article  PubMed  CAS  Google Scholar 

  • Hajiboland R, Ebrahimi N (2011) Effect of exposure to UV radiation on growth, photosynthesis and antioxidant defense system in tobacco (Nicotiana rustica L. cv. Basmas) plants treated with exogenous polyamines. Genet Plant Physiol 1:76–90

    Google Scholar 

  • Hamill JD, Robins RJ, Parr AJ (1990) Over-expression of a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol 15:27–38

    Article  PubMed  CAS  Google Scholar 

  • Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546

    Article  PubMed  CAS  Google Scholar 

  • Hao G, Ji H, Li Y, Shi R, Wang J, Feng L, Huang L (2012) Exogenous ABA and polyamines enhanced salvianolic acids contents in hairy root cultures of Salvia miltiorrhiza Bge.f.alba. Plant Omics 5(5):446–452

    CAS  Google Scholar 

  • Hartmann T, Witte L (1995) Pyrrolizidine alkaloids: chemical, biological and chemoecological aspects. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Oxford, Pergamon, pp 155–233

    Google Scholar 

  • Hashimoto T, Matsuda J, Yamada Y (1993) Two-step epoxidation of hyoscyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6-hydroxylase. FEBS Lett 329:35–39

    Article  PubMed  CAS  Google Scholar 

  • Herminghaus S, Tholl D, Rugenhagen C (1996) Improved metabolic action of a bacterial lysine decarboxylase gene in tobacco hairy root cultures by its fusion to an rbcS transit peptide coding sequence. Transgenic Res 5:193–201

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Lin C, He F, Li Z, Guan Y, Hu Q, Hu J (2017) Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biol 17(1):1–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hudec J, Bakos D, Mravec D, Kobida L, Burdova M, Turianica I, Hlusek J (2006) Content of phenolic compounds and free polyamines in black chokeberry (Aronia melanocarpa) after application of polyamine biosynthesis regulators. J Agric Food Chem 54:3625–3628

    Article  PubMed  CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Khan F, Hussain HA, Nie L (2016) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:1–14

    Google Scholar 

  • Hyun TK, Eom SH, Jeun YC, Han SH, Kim J-S (2013) Identification of glutamate decarboxylases as a γ-aminobutyric acid (GABA) biosynthetic enzyme in soybean. Ind Crops Prod 49:864–870

    Article  CAS  Google Scholar 

  • Ioannidis NE, Kotzabasis K (2007) Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochim Biophys Acta 1767:1372–1382

    Article  PubMed  CAS  Google Scholar 

  • Isah T, Umar S, Mujib A, Sharma MP, Rajasekharan PE. Zafar N, Fruk A (2017) Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-017-1332-2

    Article  Google Scholar 

  • Jardin PD (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hort 196:3–14

    Article  CAS  Google Scholar 

  • Jiménez-Bremont JF, Marina M, Guerrero-González ML, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A (2014) Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front Plant Sci 5:95. https://doi.org/10.3389/fpls.2014.00095

    Article  PubMed  PubMed Central  Google Scholar 

  • Jouhikainen K, Lindgren L, Jokelainen T (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551

    Article  CAS  Google Scholar 

  • Kakkar RK, Rai VK (1993) Plant polyamines in flowering and fruit ripening. Phytochem 33:1281–1288

    Article  CAS  Google Scholar 

  • Kanchanapoom M, Antognoni F, Pistocchi R, Bagni N (1991) Effect of auxins on spermidine uptake into carrot protoplasts. Physiol Plant 82:19–23

    Article  CAS  Google Scholar 

  • Kang YM, Lee OS, Jung HY (2005) Overexpression of hyoscyamine 6-hydroxylase (h6h) gene and enhanced production of tropane alkaloids in Scopolia parviflora hairy root lines. J Microbiol Biotechnol 15:91–98

    CAS  Google Scholar 

  • Karatan E, Michael AJ (2013) A wider role for polyamines in biofilm formation. Biotechnol Lett. https://doi.org/10.1007/s10529-013-1286-3

    Article  PubMed  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotech 23:75–83

    Article  CAS  Google Scholar 

  • Kaur-Sawhney R, Dai Y, Galston AW (1986) Effect of inhibitors of polyamine biosynthesis on gibberellin-induced inter-node growth in light-grown dwarf peas. Plant Cell Physiol 27:253–260

    PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Galston AW (1988) Spermidine and flower bud differentiation in thin-layer explants of tobacco. Planta 173:282–284

    Article  PubMed  CAS  Google Scholar 

  • Kevers C, Le Gal N, Monteiro M, Dommes J, Gaspar T (2000) Somatic embryogenesis of Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathways. Plant Growth Regul 31:209–214

    Article  CAS  Google Scholar 

  • Khan HA, Ziaf K, Amjad M, Iqbal Q (2012) Exogenous application of polyamines improves germination and early seedling growth of hot pepper. Chil J Agric Res 72:429–433

    Article  Google Scholar 

  • Kiseleva IS, Kaminskaya OA (2002) Hormonal regulation of assimilate utilization in barley leaves in relation to the development of their source function. Russ J Plant Physiol 49:534–540

    Article  CAS  Google Scholar 

  • Kumar V, Giridhar P, Chandrashekar A, Ravishankar GA (2008) Polyamines influence morphogenesis and caffeine biosynthesis in in vitro cultures of Coffea canephora P. ex Fr. Acta Physiol Plant 30:217–223

    Article  CAS  Google Scholar 

  • Kumría R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    Article  Google Scholar 

  • Kusano T, Kim DW, Liu T, Berberich T (2015) Polyamine catabolism in plants. In: Kusano T, Suzuki H (eds) Polyamines. Springer., Japan, pp 47–60

    Google Scholar 

  • Le G-L Saos, Hourmant F A (2001) Stimulation of putrescine biosynthesis via the ornithine decarboxylase pathway by gibberellic acid in the in vitro rooting of globe artichoke (Cynara scolymus). Plant Growth Regul 35:277–284

    Article  Google Scholar 

  • Lee OS, Kang YM, Jung HY (2005) Enhanced production of tropane alkaloids in Scopolia parviflora by introducing the PMT (putrescine N-methyltransferase) gene. In Vitro Cell Dev Biol 41:167–172

    Article  CAS  Google Scholar 

  • Legocka J, Zajchert I (1999) Role of spermidine in the stabilization of the apoprotein of the light-harvesting chlorophyll a/b-protein complex of photo-system II during leaf senescence process. Acta Physiol Plant 21:127–132

    Article  CAS  Google Scholar 

  • Lepri O, Bassie L, Safwat G, Thu-Hang P, Trung-Nghia P, Hölttä E, Chris-tou P, Capell T (2001) Over-expression of human ornithine decarboxylase cDNA in transgenic rice plants alters the polyamine pool in a tissue-specific manner. Mol Gen Genet 266:303–312

    Article  CAS  Google Scholar 

  • Li Z, Peng Y, Zhang XQ, Ma X, Huang LK, Yan YH (2014) Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molécules 19:18003–18024

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Zhang Y, Zhang X, Peng Y, Merewitz E, Ma X, Huang L (2016) The alterations of endogenous polyamines and phytohormones induced by exogenous application of spermidine regulate antioxidant metabolism, metallothionein and relevant genes conferring drought tolerance in white clover. Environ Exp Bot 124:22–38

    Article  CAS  Google Scholar 

  • Lindemose S, Nielsen PE, Mollegaard NE (2005) Polyamines preferentially interact with bent adenine tracts in double-stranded DNA. Nucleic Acids Res 33:1790–1803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Gu DD, Wu W, Wen XX, Liao YC (2013) The Relationship between polyamines and hormones in the regulation of wheat grain filling. PloS One 8:e78196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu JH, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827. https://doi.org/10.3389/fpls.2015.00827

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Liu P, Qi D, Peng X, Liu G (2017) Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. J Plant Physiol 211:90–99

    Article  PubMed  CAS  Google Scholar 

  • Mader JC, Hanke DE (1997) Polyamine sparing may be involved in the prolongation of cell division due to inhibition of phenylpropanoid synthesis in cytokinin-starved soybean cells. J Plant Growth Regul 16:89–93

    Article  CAS  Google Scholar 

  • Mahgoub MH, El-Ghorab AH, Bekheta HM (2006) Effect of some bioregulators on the endogenous phytohormones, chemical composition, essential oil and its antioxidant activity of carnation (Dianthus caryophyllus L.). Mansoura Univ J Agri Sci 31:4229–4245

    Google Scholar 

  • Mahgoub MH, Abdel ANG, Mazhar AMA (2011) Response of Dahlia pinnata L. plant to foliar spray with putrescine and thiamine on growth, flowering and photosynthetic pigments. Am Eurasian J Agric Environ Sci 10(5):769–775

    CAS  Google Scholar 

  • Mahros KM, Badawy EM, Mahgoub MH, Habib AM, Sayed IME (2011) Effect of putrescine and uniconazole treatments on flower characters and photosynthetic pigments of Chrysanthemum indicum L. plant J Am Sci 7(3):399–408

    Google Scholar 

  • Majumdar R, Barchi B, Turlapati SA, Gagne M, Minocha R, Long S, Minocha SC (2016) Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci 7:78. https://doi.org/10.3389/fpls.2016.00078

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin-Tanguy J (1997) Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol Plant 100:675–688

    Article  CAS  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  • Matilla AJ (1996) Polyamines and seed germination. Seed Sci Res 6:81–93

    Article  CAS  Google Scholar 

  • Mattoo AK, Minoscha SC, Minocha R, Handa A (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413

    Article  PubMed  CAS  Google Scholar 

  • Mattoo AK, Fatima T, Upadhyay RK, Handa AK (2015) Polyamines in plants: biosynthesis from arginine, and metabolic, physiological and stress-response roles. In: D’Mello JPF (ed) Amino acids in higher plants. CAB International, USA, pp 177–194

    Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:175. https://doi.org/10.3389/fpls.2014.00175

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura K (2013) Nitrogen and phosphorus nutrition under salinity stress. In: Ahmad P, Prasad MNV, Azooz MM (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 425–441

    Chapter  Google Scholar 

  • Monteiro M, Kevers C, Dommes J, Gaspar T (2002) A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tissue Organ Cult 68:225–232

    Article  CAS  Google Scholar 

  • Moschou PN, Delis ID, Paschalidis KA, Roubelakis-Angelakis KA (2008) Transgenic tobacco plants overexpressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiol Plant 133:140–156

    Article  PubMed  CAS  Google Scholar 

  • Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot 63:5003–5015

    Article  PubMed  CAS  Google Scholar 

  • Moyano E, Jouhikainen K, Tammela P (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54:203–221

    Article  PubMed  CAS  Google Scholar 

  • Murray RDH, Mendez J, Brown SA (1982) The natural coumarin: Occurrence, chemistry and biochemistry. John Wiley, New York

    Google Scholar 

  • Mustafavi SH (2016) Effect of plant growth regulators on growth and productive characteristics of valerian at different environmental conditions. Dissertation. University of Maragheh

  • Mustafavi SH, Shekari F, Abbasi A (2015a) Putrescine improve low temperature tolerance of fennel (Foeniculum vulgare Mill.) seeds. Cercet Agron Mold 48(1):69–76

    Article  Google Scholar 

  • Mustafavi SH, Shekari F, Nasiri Y, Hatami-Maleki H (2015b) Nutritional and biochemical response of water-stressed valerian plants to foliar application of spermidine. Biol Forum 7(1):1811–1815

    CAS  Google Scholar 

  • Mustafavi SH, Shekari F, Hatami Maleki H (2016) Influence of exogenous polyamines on antioxidant defence and essential oil production in valerian (Valeriana officinalis L.) plants under drought stress. Acta Agri Slov 107(1):81–91

    Article  Google Scholar 

  • Nahed GAA, Lobna ST, Soad MMI (2009) Some studies on the effect of putrescine, ascorbic acid and thiamine on growth, flowering and some chemical constituents of gladiolus plants at Nubaria. Ozean J App Sci 2:169–179

    Google Scholar 

  • Narula A, Kumar SV, Pande D (2004) Agrobacterium mediated transfer of arginie decarboxylase and ornithine decarboxylase genes to Datura innoxiaenhances shoot regeneration and hyoscyamine biosynthesis. J Plant Biochem Biotech 13:127–130

    Article  CAS  Google Scholar 

  • Neumann KH, Kumar A, Imani J (2009) Plant propagation—meristem cultures, somatic embryogenesis. In: Neumann KH, Kumar A, Imani J (eds) Plant cell and tissue culture—a tool in biotechnology, principles and practice. Springer, Berlin, pp 75–137

    Chapter  Google Scholar 

  • Niakan M, Rezapour Mahjoob S, Ghorbanli M (2015) Effect of exogenous putrescine on growth, photosynthesis and alkaloid compounds of Datura (Datura stramonium L.) in response to salinity stress under hydroponic conditions. J Sci Tech Greenhouse Cult 6(21):15–26

    Google Scholar 

  • Niemi K, Sutela S, Haggman H, Scagel C, Vuosku J, Jokela A, Sarjala T (2006) Changes in polyamine content and localization of Pinus sylvestris ADC and Suillus variegatus ODC mRNA transcripts during the formation of mycorrhizal interaction in an in vitro cultivation system. J Exp Bot 57(11):2795–2804

    Article  PubMed  CAS  Google Scholar 

  • Orabi SA, Talaat IM, Balbaa LK, Abdalla AE (2015) Influence of pyridoxine and spermine on lemongrass (Cymbopogon citratus) plants. Nusantara bioscie 7:139–143

    Article  Google Scholar 

  • Oracz K, Karpinski S (2016) Phytohormones signaling pathways and ROS involvement in seed germination. Front Plant Sci 7:1–6

    Google Scholar 

  • Oshmarina VI, Shevyakova NI, Shamina ZB (1982) Dynamics of free amino acids and amides in Nicotiana sylvestris cell cultures at different concentrations of putrescine in the medium. Soviet Plant Physiol 29:477–281

    Google Scholar 

  • Pal M, Szalai G, Janda T (2015) Speculation: polyamines are important in abiotic stress signaling. Plant Sci. https://doi.org/10.1016/j.plantsci..05.003

    Article  PubMed  Google Scholar 

  • Palazón J, Moyano E, Rcusidó RM (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165:1289–1295

    Article  CAS  Google Scholar 

  • Park JB (2009) Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum). J Agric Food Chem 57:8868–8872

    Article  PubMed  CAS  Google Scholar 

  • Parvin S, Lee OR, Sathiyaraj G, Khorolragchaa A, Kim YJ, Yang DC (2014) Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Genetics 53:70–78

    Google Scholar 

  • Pieruzzi FP, Dias LLC, Balbuena TS, Santa-Catarina C, Dos Santos ALW, Floh EIS (2011) Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann Bot 108:337–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pottosin I, Shabala S (2014) Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front Plant Sci 5:1–16

    Article  Google Scholar 

  • Rafiee H, Naghdi Badi H, Mehrafarin A, Qaderi A, Zarinpanjeh N, Sekara A, Zand E (2016) Application of plant biostimulants as new approach to improve the biological responses of medicinal plants- a critical review. J Med Plants 15(59):6–39

    Google Scholar 

  • Ramey BE, Koutsoudis M, Bodman SB, Fuqua C (2004) Biofilm formation in plant–microbe associations. Curr Opin Micro Biol 7:602–609

    Article  CAS  Google Scholar 

  • Rastogi R, Davies PJ (1991) Polyamine metabolism in ripening tomato fruit. Plant Physiol 95:41–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rezvanypour S, Hatamzadeh A, Elahinia SA, Asghari HR (2015) Exogenous polyamines improve mycorrhizal development and growth and flowering of Freesia hybrida. J Hort Res 23(2):17–25

    CAS  Google Scholar 

  • Rocha P, Stenzel O, Parr A (2002) Functional expression of tropinone reductase I (trI) and hyoscyamine-6-hydroxylase (h6h) from Hyoscyamus niger in Nicotiana tabacum. Plant Sci 162:905–913

    Article  CAS  Google Scholar 

  • Rosales EP, Iannone MF, Groppa MD, Benavides MP (2012) Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids 42:857–865

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    Article  PubMed  CAS  Google Scholar 

  • Rugini E (1992) Involvement of polyamines in auxin and Agrobacterium rhizogenes-induced rooting of fruit trees in vitro. J Am Soc Horti Sci 117:532–536

    CAS  Google Scholar 

  • Santa-Catarina C, Silveira V, Scherer GFE, Floh EIS (2007) Polyamine and nitric oxide levels relate with morphogenetic evolution in somatic embryogenesis of Ocotea catharinensis. Plant Cell Tissue Organ Cult 90:93–101

    Article  CAS  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci 98:367–372

    Article  PubMed  CAS  Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21(4):329–340

    Article  PubMed  CAS  Google Scholar 

  • Scaramagli S, Bueno M, Torrigiani P, Altamura MM, Capitani F, Bagni N (1995) Morphogenesis in cultured thin layers and pith explants of tobacco. II. Early hormone-modulated polyamine biosynthesis. J Plant Physiol 147:113–117

    Article  CAS  Google Scholar 

  • Serafini-Fracasini D, Della-Mea M, Tasco G, Casadio R, Del-Duca S (2009) Plant and animal transglutaminases: do similar functions imply similar structures? Amino Acids 36:643–657

    Article  CAS  Google Scholar 

  • Serafini-Fracasini D, Di Sandro A, Del Duca S (2010) Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems. Plant Physiol Biochem 48:602–611

    Article  CAS  Google Scholar 

  • Serapiglia MJ, Minocha R, Minocha CS (2008) Changes in polyamines, inorganic ions and glutamine synthetase activity in response to nitrogen availability and form in red spruce (Picea rubens). Tree Physiol 28:1793–1803

    Article  PubMed  CAS  Google Scholar 

  • Shekari F, Asadi Danalo A, Mustafavi SH (2015) Exogenous polyamines improve seed germination of borage under salt stress via involvement in antioxidant defenses. WALIA 31(S6):57–63

    Google Scholar 

  • Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ (2012) Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci 194:130–135

    Article  CAS  Google Scholar 

  • Sheteiwy M, Shen H, Xu J, Guan Y, Song W, Hu J (2017) Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ Exp Bot 137:58–72

    Article  CAS  Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 40:20–30

    Google Scholar 

  • Shoji T, Hashimoto T (2015) Polyamine-derived alkaloids in plants: molecular elucidation of biosynthesis. In: Kusano T, Suzuki H (eds) Polyamines. Springer, Japan, pp 189–200

    Google Scholar 

  • Shu S, Guo SR, Yuan LY (2012) A review: polyamines and photosynthesis. In: Advances in photosynthesis—fundamental aspects. InTech, Rijeka, pp 439-464

  • Sivanandhan G, Mariashibu TS, Arun M, Rajesh M, Kasthurirengan S, Selvaraj N, Ganapathi A (2011) The effect of polyamines on the efficiency of multiplication and rooting of Withania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol Plant 33:2279–2288

    Article  CAS  Google Scholar 

  • Slocum RD, Flores HE (1991) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton

    Google Scholar 

  • Subramanyam S, Sardesai N, Minocha SC, Zheng C, Shukle RH, Williams CE (2015) Hessian fly larval feeding triggers enhanced polyamine levels in susceptible but not resistant wheat. BMC Plant Biol. https://doi.org/10.1186/s12870-014-0396y

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudha G, Ravishankar GA (2003) Putrescine facilitated enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens. J Plant Physiol 160:339–346

    Article  PubMed  CAS  Google Scholar 

  • Suresh B, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA (2004) Polyamine and methyl jasmonate-influenced enhancement of betalaine production in hairy root cultures of Beta vulgaris grown in a bubble column reactor and studies on efflux of pigments. Process Biochem 39:2091–2096

    Article  CAS  Google Scholar 

  • Takahashi T, Kakehi J (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  PubMed  CAS  Google Scholar 

  • Talaat IM, Balbaa LK (2010) Physiological response of sweet basil plants (Ocimum basilicum L.) to putrescine and trans-cinnamic acid. Am Eurasian J Agric Environ Sci 8(4):438–445

    CAS  Google Scholar 

  • Talaat IM, Bekhea MA, Mahgoub MH (2005) Physiological response of periwinkle plants (Catharanthus roseus L.) to tryptophan and putrescine. Int J Agric Biol 2:210–213

    Google Scholar 

  • Tavladoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Toninello A, Agostinelli E (2012) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42:411–426

    Article  PubMed  CAS  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240(1):1–18

    Article  PubMed  CAS  Google Scholar 

  • Tisi A, Angelini R, Cona A (2011) Does polyamine catabolism influence root development and xylem differentiation under stress conditions? Plant Signal Behav 6(11):1844–1847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veerasamy G, Chinnagounder S (2013) Effect of polyamines on in vitro organogenesis using shoot tip explants of Stevia rebaudiana Bert. Int J Rec Biotechnol 21(2):5–10

    Google Scholar 

  • Viu AFM, Viu MAO, Tavares AR, Vianello F, Lima GPP (2009) Endogenous and exogenous polyamines in the organogenesis in Curcuma longa L. Sci Hort 121:501–504

    Article  CAS  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in trans-genic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    Article  CAS  Google Scholar 

  • Wang BQ, Zhang QF, Liu JH, Li GH (2011) Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochem Biophys Res Commun 413:10–16

    Article  PubMed  CAS  Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Over expression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GF (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    Article  PubMed  CAS  Google Scholar 

  • Wolff EC, Park MH (2015) Role of the polyamine spermidine as a precursor for hypusine modification in eIF5A. In: Kusano T, Suzuki H (eds) Polyamines. Springer, Japan, pp 121–130

    Google Scholar 

  • Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ, Gao XW (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol. Plant Microbe Interact 27(7):655–663

    Article  CAS  Google Scholar 

  • Xu S, Hu JL, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63:279–290

    Article  CAS  Google Scholar 

  • Yang YK, Lee SY, Park WT, Park NI, Park SU (2010) Exogenous auxins and polyamines enhance growthand rosmarinic acid production in hairy root cultures of Nepeta cataria L. Plant omics 3(6):190–193

    CAS  Google Scholar 

  • Yang C, Chen M, Zeng L, Zhang L, Liu X, Lan X, Tang K, Liao Z (2011) Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by overexpressing pmt and h6h genes. Plant Omics 4(1):29–33

    CAS  Google Scholar 

  • Yang L, Hong X, Xiao-xia W, Yun-cheng L (2016) Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. J Integr Agric 15(12):2759–2774

    Article  CAS  Google Scholar 

  • Yan-hua Z, Yu-ping Z, Jing X, Hui W, Hui-zhe C, Yi-kai Z, De-feng Z (2016) Effects of chilling tolerance induced by spermidine pretreatment on antioxidative activity, endogenous hormones and ultrastructure of indica japonica hybrid rice seedlings. J Integr Agric 15(2):295–308

    Article  CAS  Google Scholar 

  • Youssef AA, Mahgoub MH, Talaat IM (2004) Physiological and biochemical aspects of Matthiola incana L. plants under the effect of putrescine and Kinetin treatments. Egypt J App Sci 19:492–510

    Google Scholar 

  • Yu Y, Zhang WB, Li XY, Piao XC, Jiang J, Lian ML (2016) Pathogenic fungal elicitors enhance ginsenoside biosynthesis ofadventitious roots in Panax quinquefolius during bioreactor culture. Ind Crops Prod 94:729–735

    Article  CAS  Google Scholar 

  • Zeid FA, Omer EA, Amin AY, Hanafy SAH (2014) Effect of putrescine and salicylic acid on ajwain plant (Trachyspermum ammi) at vegetative stage grown under drought stress. Int J Agric Sci Res 4(6):61–80

    Google Scholar 

  • Zhang L, Ding R, Chai Y (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci 101:6786–67910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Mehrafarin or Mansour Ghorbanpour.

Additional information

Communicated by L. A. Kleczkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafavi, S.H., Naghdi Badi, H., Sękara, A. et al. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant 40, 102 (2018). https://doi.org/10.1007/s11738-018-2671-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2671-2

Keywords

Navigation