Skip to main content

Advertisement

Log in

Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salinity stress significantly affects plant growth and development because of osmotic stress, ion toxicity, and nutrient imbalance. Therefore, salinity stress becomes a serious threat to rapeseed production in agriculture. Plants evolved a series of complex mechanisms, including morphological changes, physiological adjustment, and gene expression regulation, at a molecular level to adapt to salt stress. Epigenetic regulations, including DNA methylation and histone modification, play a major role in tuning gene expression in plant response to environmental stimuli. Although many progresses have been reported in plant response to salt stress, the epigenetic changes in Brassica napus under salt stress are far from being understood. A series of physiological parameters, including water content, proline content, malondialdehyde content, electrolyte leakage, and antioxidant enzyme activities, under different concentrations (0, 25, 50, and 100 mM) of NaCl treatment in “Yangyou 9” was determined at the germination stage. Immunofluorescent staining and high-performance liquid chromatography-assisted quantification were conducted to analyze the level and distribution patterns of DNA and histone methylation under salt stress. Results of morphological and physiological analyses under salt stress indicated that 25 mM NaCl treatment promoted the growth of “Yangyou 9” seedlings, whereas 50 and 100 mM NaCl treatments inhibited the growth of “Yangyou 9” seedlings. Epigenetic investigations showed that 25 mM NaCl mediated the enrichment of H3K4me3, as well as decreases in H3K9me2 and 5-methylcytosine (5-mC), whereas 50 and 100 mM NaCl induced increases in H3K9me2 and 5-mC and a decrease in H3K4me3. Overall, this study offers new insights into the epigenetic changes in salt stress response in rapeseed, and this information would be propitious to engineer crops with enhanced salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5-mC:

5-Methylcytosine

BSA:

Bovine serum albumin

CAT:

Catalase

EDTA:

Ethylenediaminetetraacetic acid

MDA:

Malondialdehyde

NBT:

Nitro blue tetrazolium

PBS:

Phosphate-buffered saline

Pro:

Proline

POD:

Peroxidase

qPCR:

Quantitative real-time RT-PCR

REL:

Relative electrolyte leakage

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

WC:

Water content

References

  • Adams RL, Burdon RH (2012) Molecular biology of DNA methylation. Springer, Berlin

    Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot 63:266–273

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Attwood JT, Yung RL, Richardson BC (2002) DNA methylation and the regulation of gene transcription. Cell Mol Life Sci 59:241–257

    Article  CAS  PubMed  Google Scholar 

  • Bajji M, Kinet J-M, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  • Barth TK, Imhof A (2010) Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci 35:618–626

    Article  CAS  PubMed  Google Scholar 

  • Bender J (2004) Chromatin-based silencing mechanisms. Curr Opinion Plant Biol 7:521–526

    Article  CAS  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU (1970) Methoden der enzymatischen analyse, vol 3. Verlag Chemie, Weinheim

    Google Scholar 

  • Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS One 7:e30515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bybordi A (2010) The influence of salt stress on seed germination, growth and yield of canola cultivars. Not Bot Hort Agrobot Cluj 38:128–133

    CAS  Google Scholar 

  • Bybordi A, Tabatabaei J (2009) Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Not Bot Horti Agrobot Cluj Napoca 37:71

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen LT, Luo M, Wang YY, Wu K (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu JK (2009a) Epigenetic regulation of stress responses in plants. Curr Opinion Plant Biol 12:133–139

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK (2009b) RNA-directed DNA methylation and demethylation in plants. Sci China Life Sci 52:331–343

    Article  CAS  Google Scholar 

  • Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G, Schubert D, Jacobsen SE (2012) Loss of the DNA methyltransferase MET1 induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana. PLoS Genet 8:e1003062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Jacobsen SE (2011) Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol 14:179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  CAS  PubMed  Google Scholar 

  • He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng XW (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasencakova Z, Meister A, Walter J, Turner BM, Schubert I (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12:2087–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasencakova Z, Meister A, Schubert I (2001) Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110:83–92

    Article  CAS  PubMed  Google Scholar 

  • Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7:e40203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, To TK, Ishida J, Matsui A, Kimura H, Seki M (2012) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53:847–856

    Article  CAS  PubMed  Google Scholar 

  • Kishor PK, Sangam S, Amrutha R, Laxmi PS, Naidu K, Rao K, Rao S, Reddy K, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J Plant Physiol 183:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kwak S-S, Kim S-K, Lee M-S, Jung K-H, Park I-H, Liu J-R (1995) Acidic peroxidases from suspension-cultures of sweet potato. Phytochemistry 39:981–984

    Article  CAS  Google Scholar 

  • Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis J, Bird A (1991) DNA methylation and chromatin structure. FEBS Lett 285:155–159

    Article  CAS  PubMed  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, May B, Yordan C, Singer T, Martienssen R (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol 1:E67

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Yang Z, Wang X, Li K, An H, Liu J, Yang G, Fu T, Yi B, Hong D (2016) A mitochondria-targeted PPR protein restores pol cytoplasmic male sterility by reducing orf224 transcript levels in oilseed rape. Mol Plant 9:1082–1084

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Lu G, Wu X, Chen B, Gao G, Xu K (2007) Evaluation of genetic and epigenetic modification in rapeseed (Brassica napus) induced by salt stress. J Integr Plant Biol 49:1599–1607

    Article  CAS  Google Scholar 

  • Marconi G, Pace R, Traini A, Raggi L, Lutts S, Chiusano M, Guiducci M, Falcinelli M, Benincasa P, Albertini E (2013) Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera). PLoS One 8:e75597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuter G (2005) Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 24:1418–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numa H, Kim JM, Matsui A, Kurihara Y, Morosawa T, Ishida J, Mochizuki Y, Kimura H, Shinozaki K, Toyoda T, Seki M, Yoshikawa M, Habu Y (2010) Transduction of RNA-directed DNA methylation signals to repressive histone marks in Arabidopsis thaliana. EMBO J 29:352–362

    Article  CAS  PubMed  Google Scholar 

  • Ou X, Zhang Y, Xu C, Lin X, Zang Q, Zhuang T, Jiang L, von Wettstein D, Liu B (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS One 7:e41143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razin A, Cedar H (1991) DNA methylation and gene expression. Microbiol Rev 55:451–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes JC (2006) Chromatin modifiers that control plant development. Curr Opin Plant Biol 9:21–27

    Article  CAS  PubMed  Google Scholar 

  • Richards EJ, Elgin SC (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108:489–500

    Article  CAS  PubMed  Google Scholar 

  • Rozema J, Flowers T (2008) Ecology. Crops for a salinized world. Science 322:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Tan MP (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48:21–26

    Article  CAS  PubMed  Google Scholar 

  • Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660

    CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven KJ, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  CAS  PubMed  Google Scholar 

  • Wang H (2005) The potential, problems and strategy for the development of biodiesel using oilseed rape. Chin J Oil Crop Sci 27:74

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhao X, Pan Y, Zhu L, Fu B, Li Z (2011a) DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Gen Genom 38:419–424

    Article  CAS  Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2011b) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grants 31330057, 31501335), the Jiangsu Province Science Foundation (Grants BK20140478, BK20150441), China Postdoctoral Science Foundation (2016T90511, 2015M570482), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youping Wang.

Additional information

Communicated by S. Weidner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Li, J., Jiang, J. et al. Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress. Acta Physiol Plant 39, 128 (2017). https://doi.org/10.1007/s11738-017-2427-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2427-4

Keywords

Navigation