Skip to main content
Log in

Somatic and zygotic embryos share common developmental features at the onset of plant embryogenesis

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In many vascular plants, zygotic reproduction regularly alternates with different types of asexual reproduction, so embryos can develop not only from fertilized egg cells, but also from induced somatic cells through the process of somatic embryogenesis. Although somatic and zygotic embryogenesis are not directly correlated, their common features are presented, demonstrating that the origin and development of the somatic embryo morphologically and physiologically resemble zygotic embryogenesis at certain points. To initiate embryogenesis, both competent egg and somatic cells require activation either by fertilization or specific environmental signals, respectively. During induction of somatic and zygotic embryogenesis, modulation of DNA methylation, activation of particular hormonal and stress-related mechanisms and changes in cell wall properties are triggered. Here, we give an overview and discuss the most recent research in the field of plant somatic and zygotic embryogenesis, with special attention given to the onset of embryogenesis and early embryo development as well as to embryogenesis-related interconnections between plant hormones, stress responses, DNA methylation and regulatory gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2012) Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell Tiss Org Cult 109:391–400. doi:10.1007/s11240-011-0103-8

    CAS  Google Scholar 

  • Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660

    CAS  PubMed  Google Scholar 

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644

    CAS  PubMed  Google Scholar 

  • Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M, Grob S, Steimer A, Barann M, Klostermeier UC, Leblanc O, Vielle-Calzada JP, Rosenstiel P, Grimanelli D, Grossniklaus U (2011) Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145(5):707–719

    CAS  PubMed  Google Scholar 

  • Berger F, Grini PE, Schnittger A (2006) Endosperm: an integrator of seed growth and development. Curr Opin Plant Biol 9:664–670

    CAS  PubMed  Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:S228–S245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bobák M, Šamaj J, Hlinkovà E, Hlavačka A, Ovečka M (2004) Extracellular matrix in early stages of direct somatic embryogenesis in leaves of Drosera spathulata. Biol Plant 47:161–166

    Google Scholar 

  • Borderies G, le Bechec M, Rossignol M, Lafitte C, Le Deunff E, Beckert M, Dumas C, Matthys-Rochon E (2004) Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 83(5):205–212

    CAS  PubMed  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, Campagne MMV (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH et al (2006) Genes directly regulated by LEAFY COTYLEDONE2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103:3468–3473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao X (2003) Role of the DRM and CMT3 methyltransferases in RNAdirected DNA methylation. Curr Biol 13:2212–2217

    CAS  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002a) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci USA 99:16491–16498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002b) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    CAS  PubMed  Google Scholar 

  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123

    CAS  PubMed  Google Scholar 

  • Chandler JW, Cole M, Flier A, Grewe B, Werr W (2007) The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134:1653–1662. doi:10.1242/dev.001016

    CAS  PubMed  Google Scholar 

  • Chapman A, Blervacq AS, Hendrix T, Slomianny C, Vasseur J, Hilbert JL (2000a) Cell wall differentiation during early somatic embryogenesis in plants. II. Ultrastructural study and pectin immunolocalisation on chicory embryos. Can J Bot 78:824–831. doi:10.1139/b00-060

    CAS  Google Scholar 

  • Chapman A, Helleboid S, Blervacq AS, Vasseur J, Hilbert JL (2000b) Removal of the fibrillar network surrounding Cichorium somatic embryos using cytoskeleton inhibitors: analysis of proteic components. Plant Sci 150:103–114. doi:10.1016/S0168-9452(99)00185-5

    CAS  Google Scholar 

  • Chapman A, Blervacq AS, Vasseur J, Hilbert JL (2000c) Arabinogalactan proteins in Chichorium somatic embryogenesis: effect of β-glucosyl Yariv reagent and epitope localisation during embryo development. Planta 211:305–314

    CAS  PubMed  Google Scholar 

  • Clark JK, Sheridan WF (1991) Isolation and characterization of 51 embryo-specific mutations of Maize. Plant Cell 3:935–995

    PubMed Central  PubMed  Google Scholar 

  • Coutos-Thevenot P, Maes O, Jouenne T, Mauro MC, Boulay M, Deloire A, Guern J (1992) Extracellular protein patterns of grapevine cell suspensions in embryogenic and non-embryogenic situations. Plant Sci 86(2):137–145

    CAS  Google Scholar 

  • Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G (2004) AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol 136:3660–3669

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Jong AJ, Cordewener J, LoSchiavo F, Terzi M, Vandekerckhove J, VanKammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4(4):425–433

    PubMed Central  PubMed  Google Scholar 

  • Decout E, Dubois T, Guedira M, Dubois J, Audran JC, Vasseur J (1994) Role of temperature as a triggering signal for organogenesis or somatic embryogenesis in wounded leaves of chicory cultured in vitro. J Exp Bot 45(281):1859–1865

    CAS  Google Scholar 

  • De Jong AJ, Schmidt EDL, DeVries SC (1993) Early events in higher-plant embryogenesis. Plant Mol Biol 22:367–377

    CAS  PubMed  Google Scholar 

  • DeVries SC, Booij H, Janssen R, Vogels R, Saris L, LoSchiavo F, Terzi M, VanKammen A (1998) Carrot somatic embryogenesis depends on the phytohormone-controlled presence of correctly glicosylated proteins. Gene Develop 2:462–476

    Google Scholar 

  • Dickinson H, Scott R (2002) DEMETER, goddess of the harvest, activates maternal MEDEA to produce the perfect seed. Mol Cell 10:5–7

    CAS  PubMed  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48(313):1493–1509. doi:10.1093/jxb/48.8.1493

    CAS  Google Scholar 

  • Dubois T, Guedira M, Dubois J, Vasseur J (1990) Direct somatic embryogenesis in roots of Cichorium—is callose an early marker. Ann Bot 65(5):539–545

    Google Scholar 

  • Dubois T, Guedira M, Dubois J, Vasseur J (1991) Direct somatic embryogenesis in leaves of Cichorium—a histological and SEM study of early stages. Protoplasma 162(2–3):120–127

    Google Scholar 

  • Dyachock JV, Wiweger M, Kenne L, von Arnold S (2002) Endogenous nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol 128(2):523–533. doi:10.1104/pp.128.2.523

    Google Scholar 

  • Eckardt NA (2001) Auxin and the power of the proteasome in plants. Plant Cell 13:2161–2163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fehér A (2005) Why somatic plant cells start to form embryos? In: Mujib A, Samaj J (eds) Somatic embryogenesis, plant cell monographs (2). Springer-Verlag, Berlin, pp 85–101. doi:10.1007/7089_019

    Google Scholar 

  • Fehér A, Taras P, Pasternak T, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org Cult 74(3):201–228. doi:10.1023/A:1024033216561

    Google Scholar 

  • Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    CAS  PubMed  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12

    CAS  PubMed  Google Scholar 

  • Gaj MD, Zhang SB, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    CAS  PubMed  Google Scholar 

  • Gaj MD, Trojanowska A, Ujczak A, Mędrek M, Kozioł A, Garbaciak B (2006) Hormone—response mutants of Arabidopsis thaliana (L.) Heynh. impaired in somatic embryogenesis. Plant Growth Regul 49(2–3):183–197

    CAS  Google Scholar 

  • Gavish H, Vardi A, Fluhr R (1991) Extracellular proteins and early embryo development in Citrus nucellar cell cultures. Physiol Plant 82(4):606–616. doi:10.1111/j.1399-3054.1991.tb02954.x

    CAS  Google Scholar 

  • Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7:373–385

    CAS  PubMed  Google Scholar 

  • Gleeson PA, Mcnamara M, Wettenhall REH, Stone BA, Fincher GB (1989) Characterization of the hydroxyproline-rich protein core of an arabinogalactan-protein secreted from suspension-cultured Lolium multiflorum (Italian ryegrass) endosperm cells. Biochem J 264(3):857–862

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD (2013) Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS One 8(7):e69261. doi:10.1371/journal.pone.0069261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez LD, Baud S, Gilday A, Li Y, Graham IA (2006) Delayed embryo development in the ARABIDOPSIS TREHALOSE-6-PHOSPHATE SYNTHASE 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. Plant J 46:69–84

    CAS  PubMed  Google Scholar 

  • Goralski G, Lafitte C, Bouazza L, Matthys-Rochon E, Przywara L (2002) Influence of sugars on isolated microspore development in maize (Zea mays L.). Acta Biol Crac Ser Bot 44:203–212

    Google Scholar 

  • Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology. The epigenetic network in plants. Ann Bot 96(7):1143–1164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray-Mitsumune M, O’Brien M, Bertrand C, Tebbji F, Nantel A, Matton DP (2006) Loss of ovule identity induced by overexpression of the fertilization-related kinase 2 (ScFRK2), a MAPKKK from Solanum chacoense. J Exp Bot 57:4171–4187

    CAS  PubMed  Google Scholar 

  • Griffith ME, Mayer U, Capron A, Ngo QA, Surendrarao A, McClinton R, Jurgens G, Sundaresan V (2007) The TORMOZ gene encodes a nucleolar protein required for regulated division planes and embryo development in Arabidopsis. Plant Cell 19:2246–2263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grosset J, Marty I, Chartier Y, Meyer Y (1990) mRNAs newly synthetized by tobacco mesophyll protoplasts are wound-inducible. Plant Mol Biol 15:485–496

    CAS  PubMed  Google Scholar 

  • Hadfi K, Speth V, Neuhaus G (1998) Auxin-induced developmental patterns in Brassica juncea embryos. Development 125:879–887

    CAS  PubMed  Google Scholar 

  • Harada H, Kiyosue T, Kamada H, Kobayashi K (1990) Stress induced carrot somatic embryogenesis and their application to synthetic seeds. In: Sangwan RS, Sangwan-Norreel BS (eds) The impact of biotechnology in agriculture. Kluwer Academic, Dordrecht, pp 129–157

    Google Scholar 

  • Harmon AC, Gribskov M, Gubrium E, Harper JF (2001) The CDPK superfamily of protein kinases. New Phytol 151:175–183. doi:10.1046/j.1469-8137.2001.00171.x

    CAS  Google Scholar 

  • Helleboid S, Bauw G, Belingheri L, Vasseur J, Hilbert JL (1998) Extracellular beta-1,3-glucanases are induced during early somatic embryogenesis in Cichorium. Planta 205(1):56–63

    CAS  PubMed  Google Scholar 

  • Helleboid S, Chapman A, Hendriks T, Inze D, Vasseur J, Hilbert JL (2000) Cloning of beta-1,3-glucanases expressed during Cichorium somatic embryogenesis. Plant Mol Biol 42(2):377–386

    CAS  PubMed  Google Scholar 

  • Hilbert JL, Dubois T, Vasseur J (1992) Detection of embryogenesis-related proteins during somatic embryo formation in Cichorium. Plant Physiol Bioch 30(6):733–741

    CAS  Google Scholar 

  • Hirt H (2000) Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 97:2405–2407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roue C (1994) Regeneration of fertile barley plants from mechanically isolated protoplasts of the fertilized egg cell. Plant Cell 6(4):531–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34(1):107–113

    CAS  PubMed  Google Scholar 

  • Ingouff M, Jullien PE, Berger F (2006) The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Plant Cell 18(12):3491–3501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingouff M, Rademacher S, Holec S, Soljic L, Xin N, Readshaw A, Foo SH, Lahouze B, Sprunck S, Berger F (2010) Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol 20(23):2137–2143

    CAS  PubMed  Google Scholar 

  • Inui H, Yamaguchi Y, Ishigami Y, Kawaguchi S, Yamada T, Ihara H, Hirano S (1996) Three extracellular chitinases in suspension-cultured rice cells elicited by N-acetylchito-oligosaccharides. Biosci Biotech Bioch 60(12):1956–1961

    CAS  Google Scholar 

  • Ivanova A, Velcheva M, Denchev P, Atanassov A, Van Onckelen H (1994) Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol Plant 92:85–89. doi:10.1111/j.1399-3054.1994.tb06658.x

    CAS  Google Scholar 

  • Jensen WA (1968) Cotton embryogenesis—Zygote. Planta 79(4):346–366

    CAS  PubMed  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47(2–3):91–110. doi:10.1007/s10725-005-3478-x

    Google Scholar 

  • Jiménez VM, Thomas C (2005) Participation of plant hormones in determination and progression of somatic embryogenesis. In: Mujib A, Samaj J (eds) Somatic embryogenesis, plant cell monographs (2). Springer-Verlag, Berlin, pp 103–118. doi:10.1007/7089_034

    Google Scholar 

  • Jin FY, Hu LS, Yuan DJ, Xu J, Gao WH, He LR, Yang XY, Zhang XL (2013) Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. Plant Biotech J 12:161–173

    Google Scholar 

  • Kakutani T, Kato M, Kinoshita T, Miura A (2004) Control of development and transposon movement by DNA methylation in Arabidopsis thaliana. Cold Spring Harb Symp Quant Biol 69:139–143

    CAS  PubMed  Google Scholar 

  • Kamada H, Kobayashi K, Kiyosue T, Harada H (1989) Stress-induced somatic embryogenesis in carrot and its application to synthetic seed production. Vitro Cell Dev Biol Plant 25(12):1163–1166

    Google Scholar 

  • Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10(1):38–44

    CAS  Google Scholar 

  • Kamada H, Tachikawa Y, Saitou T, Harada H (1994) Heat stresses induction of carrot somatic embryogenesis. Plant Tissue Cult Lett 11(3):229–232

    Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18(10):2733–2748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    CAS  PubMed  Google Scholar 

  • Kieffer M, Neve J, Kępiński S (2010) Defining auxin response contexts in plant development. Curr Opin Plant Biol 13:12–20. doi:10.1016/j.pbi.2009.10.006

    CAS  PubMed  Google Scholar 

  • Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223(4):637–645

    CAS  PubMed  Google Scholar 

  • Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep 19:551–557

    CAS  Google Scholar 

  • Kiyosue T, Satoh S, Kamada H, Harada H (1993) Somatic embryogenesis in higher plants. J Plant Res 3:75–82 (special issue)

    Google Scholar 

  • Ko S, Thitamadee S, Yang H, Eun C-H, Sage-ono K, Higashi K, Satoh S, Kamada H (2001) Comparison and characterization of cis-regulatory regions in some embryo-specific and ABA-responsive carrot genes. DcECPs. Plant Biotech 18(1):45–54

    CAS  Google Scholar 

  • Koltunow AM, Bicknell RA, Chaudhury AM (1995) Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol 108:1345–1352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konieczny R, Bohdanowicz J, Czaplicki AZ, Przywara L (2005) Extracellular matrix surface network during plant regeneration in wheat anther culture. Plant Cell Tiss Org Cult 83:201–208. doi:10.1007/s11240-005-5771-9

    Google Scholar 

  • Kragh KM, Jacobsen S, Mikkelsen JD, Nielsen KA (1991) Purification and characterization of 3 chitinases and one beta-1,3-glucanase accumulating in the medium of cell-suspension cultures of barley (Hordeum vulgare L). Plant Sci 76(1):65–77. doi:10.1016/0168-9452(91)90219-X

    CAS  Google Scholar 

  • Kranz E, Bautor J, Lorz H (1991) In vitro fertilization of single, isolated gametes of maize mediated by electrofusion. Sex Plant Reprod 4(1):12–16. doi:10.1007/BF00194565

    Google Scholar 

  • Kreuger MV, Van Holst G-J (1996) Arabinogalactan proteins and plant differentiation. Plant Mol Biol 30:1077–1086

    CAS  PubMed  Google Scholar 

  • Kumlehn J, Lorz H, Kranz E (1998) Differentiation of isolated wheat zygotes into embryos and normal plants. Planta 205(3):327–333

    CAS  Google Scholar 

  • Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lahmy S, Guilleminot J, Schmit AC, Pelletier G, Chaboute ME, Devic M (2007) QQT proteins colocalize with microtubules and are essential for early embryo development in Arabidopsis. Plant J 50:615–626

    CAS  PubMed  Google Scholar 

  • Lau S, Slane D, Herud O, Kong J, Jurgens G (2012) Early embryogenesis in flowering plants: setting up the basic body pattern. Annu Rev Plant Biol 63:483–506

    CAS  PubMed  Google Scholar 

  • Lee EK, Cho DY, Soh WY (2001) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep 20:408–415. doi:10.1007/s002990100338

    CAS  Google Scholar 

  • Legrand S, Hendriks T, Hilbert JL, Quillet MC (2007) Characterisation of expressed sequence tags obtained by SSH during somatic embryogenesis in Cichorium intybus L. BMC Plant Biol 7:27–33

    PubMed Central  PubMed  Google Scholar 

  • Leljak D, Jelaska S (1995) Callus formation and somatic embryo production in pumpkin Cucurbita pepo L. explants on hormone-free medium. Period Biol 97(4):327–332

    Google Scholar 

  • Leljak-Levanić D, Bauer N, Mihaljević S, Jelaska S (2004a) Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Rep 23(3):120–127

    PubMed  Google Scholar 

  • Leljak-Levanić D, Bauer N, Mihaljević S, Jelaska S (2004b) Somatic embryogenesis in pumpkin (Cucurbita pepo L.): control of somatic embryo development by nitrogen compounds. J Plant Physiol 161(2):229–236

    PubMed  Google Scholar 

  • Leyser O (2002) Molecular genetics of auxin signaling. Ann Rev Plant Biol 53:377–398

    CAS  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    CAS  PubMed  Google Scholar 

  • Liu C-M, Xu Z, Chua N-H (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5(6):621–630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu NY, Zhang ZF, Yang WC (2008) Isolation of embryo-specific mutants in Arabidopsis: genetic and phenotypic analysis. Methods Mol Biol (Clifton NJ) 427:101–109

    CAS  Google Scholar 

  • Lo Schiavo F, Pitto L, Giuliano G, Torti G, Nutironchi V, Marazziti D, Vergara R, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell-cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77(3):325–331. doi:10.1007/BF00305823

    CAS  Google Scholar 

  • Long TA, Benfey PN (2006) Transcription factors and hormones: new insights into plant cell differentiation. Curr Opin Cell Biol 18:710–714. doi:10.1016/j.ceb.2006.09.004

    CAS  PubMed  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    CAS  PubMed  Google Scholar 

  • Luerssen K, Kirik V, Herrmann P, Misera S (1998) FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15:755–764

    CAS  PubMed  Google Scholar 

  • Lukowitz W, Mayer U, Jurgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84:61–71

    CAS  PubMed  Google Scholar 

  • Ma H, Sundaresan V (2010) Development of flowering plant gametophytes. Curr Top Dev Biol 91:379–412

    CAS  PubMed  Google Scholar 

  • Maheswaran G, Williams EG (1985) Origin and development of somatic embryoids formed directly on immature embryos of Trifolium repens in vitro. Ann Bot 56(5):619–630

    Google Scholar 

  • Malinowski R, Filipecki M (2002) The role of cell wall in plant embryogenesis. Cell Mol Biol Lett 7(4):1137–1151

    CAS  PubMed  Google Scholar 

  • Massonneau A, Coronado MJ, Audran A, Bagniewska A, Mol R, Testillano PS, Goralski G, Dumas C, Risueno MC, Matthys-Rochon E (2005) Multicellular structures developing during maize microspore culture express endosperm and embryo-specific genes and show different embryogenic potentialities. Eur J Cell Biol 84(7):663–675

    CAS  PubMed  Google Scholar 

  • Matthys-Rochon E (2005) Secreted molecules and their role in embryo formation in plants: a mini-review. Acta Biol Cracov Ser Bot 47(1):23–29

    Google Scholar 

  • McCabe PF, Valentine TA, Forsberg LS, Pennell RI (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9(12):2225–2241

    CAS  PubMed Central  PubMed  Google Scholar 

  • McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K, Thomas C, Schetter A, Zhou Q, Cushman MA, Tossberg J, Nickle T, Levin JZ, Law M, Meinke D, Patton D (2001) Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159:1751–1763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meinke DW (1985) Embryo-lethal mutants of Arabidopsis thaliana: analysis of mutants with a wide range of lethal phases. Theor Appl Genet 69:543–552

    CAS  PubMed  Google Scholar 

  • Meinke DW, Sussex IM (1979) Embryo-lethal mutants of Arabidopsis thaliana: a model system for genetic analysis of plant embryo development. Dev Biol 72:50–61

    CAS  PubMed  Google Scholar 

  • Meinke D, Muralla R, Sweeney C, Dickerman A (2008) Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci 13(9):483–491

    CAS  PubMed  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62(11):3713–3725

    CAS  PubMed  Google Scholar 

  • Mihaljević S, Radić S, Bauer N, Garic R, Horvat G, Leljak-Levanić D, Jelaska S (2011) Ammonium-related metabolic changes affect somatic embryogenesis in pumpkin (Cucurbita pepo L.). J Plant Physiol 168(16):1943–1951

    PubMed  Google Scholar 

  • Muralla R, Lloyd J, Meinke D (2011) Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS One 6(12):e28398. doi:10.1371/journal.pone.0028398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa H, Saijyo T, Yamauchi N, Shigyo M, Kako S, Ito A (2001) Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Sci Hort 90:85–92. doi:10.1016/S0304-4238(00)00259-4

    CAS  Google Scholar 

  • Neuhaus J-M (1999) Plant chitinases. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp 77–105

    Google Scholar 

  • Nielsen KA, Hansen IB (1992) Appearance of extracellular proteins associated with somatic embryogenesis in suspension cultures of barley (Hordeum vulgare L.). J Plant Physiol 139(4):489–497. doi:10.1016/S0176-1617(11)80500-6

    CAS  Google Scholar 

  • Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    CAS  PubMed  Google Scholar 

  • Nodine MD, Bartel DP (2012) Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482(7383):94–120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nolan KE, Saeed NA, Rose RJ (2006) The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis. Plant Cell Rep 25:711–722

    CAS  PubMed  Google Scholar 

  • Paire A, Devaux P, Lafitte C, Dumas C, Matthys-Rochon E (2003) Proteins produced by barley microspores and their derived androgenic structures promote in vitro zygotic maize embryo formation. Plant Cell Tiss Org Cult 73(2):167–176. doi:10.1023/A:1022805623167

    CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasternak T, Potters G, Caubergs G, Jansen MAK (2005) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56(418):1991–2001. doi:10.1093/jxb/eri196

    CAS  PubMed  Google Scholar 

  • Patnaik D, Mahalakshmi A, Khurana P (2005) Effect of water stress and heavy metals on induction of somatic embryogenesis in wheat leaf base cultures. Indian J Exp Biol 43(8):740–745

    CAS  PubMed  Google Scholar 

  • Phillips RL, Kaeppler SM, Peschke WM (1990) Do we understand somaclonal variation? In: Nijkamp HJJ, Van Der Plas LHW, Van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer, Dordrecht, pp 131–141. doi:10.1007/978-94-009-2103-0_19

    Google Scholar 

  • Pillot M, Baroux C, Vazquez MA, Autran D, Leblanc O, Vielle-Calzada JP, Grossniklaus U, Grimanelli D (2010) Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. Plant Cell 22(2):307–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piyatrakul P, Putranto RA, Martin F, Rio M, Dessailly F et al (2012) Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis. BMC Plant Biol 12:244. doi:10.1186/1471-2229-12-244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12(3):98–105. doi:10.1016/j.tplants.2007.01.004

    CAS  PubMed  Google Scholar 

  • Puigderrajols P, Jofre A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M (2002) Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 53:1445–1452

    CAS  PubMed  Google Scholar 

  • Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W et al (2011) A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J 68:597–606. doi:10.1111/j.1365-313x.2011.04710.x

    CAS  PubMed  Google Scholar 

  • Raghavan V (2004) Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am J Bot 91:1743–1756

    CAS  PubMed  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Rumyantseva NI, Samaj J, Ensikat HJ, Salnikov VV, Kostyukova YA, Baluska F, Volkman D (2003) Changes in the extracellular matrix surface network during cyclic reproduction of proembryogenic cell complex in the Fagopyrum tataricum (L.) Gaertn callus. Dokl Biol Sci 391:375–378

    CAS  PubMed  Google Scholar 

  • Sabeli PA, Larkins BA (2009) The development of endosperm in grasses. Plant Physiol 149:14–26

    Google Scholar 

  • Šamaj J, Bobák M, Blehová A, Krištin J, Auxtová-Šamajová O (1995) Developmental SEM observations on an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays. Protoplasma 186:45–49. doi:10.1007/BF01276934

    Google Scholar 

  • Šamaj J, Baluška F, Bobák M, Volkmann D (1999) Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4. Plant Cell Rep 18:369–374

    Google Scholar 

  • Satoh S, Kamada H, Harada H, Fujii T (1986) Auxin-controlled glycoprotein release into medium of embryogenic carrot cells. Plant Physiol 81:931–933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scanlon MJ, Stinard PS, James MG, Myers AM, Robertson DS (1994) Genetic analysis of 63 mutations affecting maize kernel development isolated from Mutator stocks. Genetics 136:281–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt EDL, De Jong AJ, De Vries SC (1994) Signal molecules involved in plant embryogenesis. Plant Mol Biol 26:1305–1313

    CAS  PubMed  Google Scholar 

  • Schoft VK, Chumak N, Choi Y et al (2011) Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Natl Acad Sci USA 108:8042–8047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma VK, Ramirez J, Fletcher JC (2003) The Arabidopsis CLV3-like (CLE) genes are expressed in diverse tissues and encode secreted proteins. Plant Mol Biol 51(3):415–425

    CAS  PubMed  Google Scholar 

  • Sharma SK, Millam S, Hedley PE, McNicol J, Bryan GJ (2008) Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. Plant Mol Biol 68:185–201

    CAS  PubMed  Google Scholar 

  • Sheen J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2(5):410–418

    CAS  PubMed  Google Scholar 

  • Shiota H, Satoh R, K-i Watabe, Harada H, Kamada H (1998) C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiol 39(11):1184–1193

    CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436. doi:10.1016/s1369-5266(02)00289-3

    CAS  PubMed  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L et al (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811. doi:10.1073/pnas.201413498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J et al (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strauss E (1998) When walls can talk, plant biologists listen. Science 282(5386):28–29. doi:10.1126/science.282.5386.28

    CAS  Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460. doi:10.1111/j.1365-313X.2009.03880.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471

    CAS  PubMed  Google Scholar 

  • Svetek J, Yadav MP, Nothnagel EA (1999) Presence of a glycosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins. J Biol Chem 274(21):14724–14733

    CAS  PubMed  Google Scholar 

  • Tao L, Yang Y, Wang Q, You X (2012) Callose deposition is required for somatic embryogenesis in plasmolyzed Eleutherococcus senticosus zygotic embryos. Int J Mol Sci 13:14115–14126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136. doi:10.1104/pp.103.019968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas C, Bronner R, Molinier J, Prinsen E, van Onckelen H, Hahne G (2002) Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215:577–583

    CAS  PubMed  Google Scholar 

  • To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trigiano RN, Gray DJ, Conger BV, McDaniel JK (1989) Origin of direct somatic embryos from cultured leaf segments of Dactylis glomerata. Bot Gaz 150:72–77

    Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaillant I, Paszkowski J (2007) Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol 10(5):528–533

    CAS  PubMed  Google Scholar 

  • Van Hengel AJ, van Kammen A, de Vries SC (2002) A relationship between seed development, arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol Plant 114(4):637–644

    PubMed  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252

    CAS  PubMed  Google Scholar 

  • Vidaurre DP, Ploense S, Krogan NT, Berleth T (2007) AMP1 and MP antagonistically regulate embryo and meristem development in Arabidopsis. Development 134:2561–2567

    CAS  PubMed  Google Scholar 

  • Vögeli-Lange R, Fründt C, Hart CM, Beffa R, Nagy F, Meins F Jr (1994) Evidence for a role of β-1,3-glucanase in dicot seed germination. Plant J 5:273–278

    Google Scholar 

  • Weijers D, Jurgens G (2005) Auxin and embryo axis formation: the ends in sight? Curr Opin Plant Biol 8:32–37

    CAS  PubMed  Google Scholar 

  • Willemsen V, Scheres B (2004) Mechanisms of pattern formation in plant embryogenesis. Annu Rev Genet 38:587–614

    CAS  PubMed  Google Scholar 

  • Williams EG, Knox RB, Kaul V, Rouse JL (1984) Post-pollination callose development in ovules of rhododendron and ledum (Ericaceae)—zygote special wall. J Cell Sci 69:127–135

    CAS  PubMed  Google Scholar 

  • Wiweger M, Farbos I, Ingouff M, Lagercrantz U, von Arnold S (2003) Expression of Chia4- Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases. J Exp Bot 54(393):2691–2699

    CAS  PubMed  Google Scholar 

  • Wójcikowska B, Jaskóła K, Gąsiorek P, Meus M, Nowak K, Gaj MD (2013) LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238(3):425–440

    PubMed Central  PubMed  Google Scholar 

  • Wu C-T, Leubner-Metzger G, Meins F Jr, Bradford KJ (2001) Class I β-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol 1261:1299–1313. doi:10.1104/pp.126.3.1299

    Google Scholar 

  • Xiang DQ, Venglat P, Tibiche C, Yang H, Risseeuw E, Cao YG, Babic V, Cloutier M, Keller W, Wang E, Selvaraj G, Datla R (2011) Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. Plant Physiol 156(1):346–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao WY, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18(4):805–814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16(1):133–141

    Google Scholar 

  • Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K, Tokuji Y (2005) Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. J Plant Physiol 162:47–54

    CAS  PubMed  Google Scholar 

  • Yang XY, Zhang XL (2010) Regulation of somatic embryogenesis in higher plants. Critic Rev Plant Sci 29(1):36–57

    CAS  Google Scholar 

  • Yang WC, Shi DQ, Chen YH (2010) Female gametophyte development in flowering plants. Annu Rev Plant Biol 61:89–108

    CAS  PubMed  Google Scholar 

  • Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12:110. doi:10.1186/1471-2229-12-110

    CAS  PubMed Central  PubMed  Google Scholar 

  • You XL, Yi JS, Choi YE (2006) Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma 227(2–4):105–112

    Google Scholar 

  • Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X (2007) A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 90(5):620–628

    CAS  PubMed  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis - a model for early development in higher-plants. Plant Cell 5:1411–1423

    PubMed Central  PubMed  Google Scholar 

  • Zuo JR, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Lucija Neal for English style and grammar improvement. The authors’ scientific work is financed by the Ministry of Science, Education and Sport of the Republic of Croatia through the project No. 119-1191196-1225, principal investigator Sibila Jelaska).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunja Leljak-Levanić.

Additional information

Communicated by A. K. Kononowicz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2015_1875_MOESM1_ESM.xlsx

The Arabidopsis transcription factors specific for SE, up-regulated during the process of somatic embryogenesis and those showing at least a tenfold expression change during early somatic embryogenesis (column E) identified by Gliwicka et al. (2013) were searched for their expression maximum during Arabidopsis zygotic embryogenesis (column F) obtained from the gene expression map of Xiang et al. (2011). Transcription factors were grouped into two separate sheets, first containing those that are common for both somatic and zygotic embryogenesis (genes common for SE and ZE), and the second that contains only somatic embryogenesis-specific transcription factors (SE-specific genes). In each sheet, genes are grouped into the columns according to transcription factor families (column B) with the stress-related families on top. Known or predicted functions are given in column D. ABA abscisic acid, GA gibberellins, JA jasmonic acid, SA salicylic acid, SE somatic embryogenesis, ZE zygotic embryogenesis. (XLSX 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leljak-Levanić, D., Mihaljević, S. & Bauer, N. Somatic and zygotic embryos share common developmental features at the onset of plant embryogenesis. Acta Physiol Plant 37, 127 (2015). https://doi.org/10.1007/s11738-015-1875-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1875-y

Keywords

Navigation