Skip to main content
Log in

Comparative proteomic analysis of cold-induced sweetening in potato (Solanum tuberosum L.) tuber

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cold-induced sweetening is one of the major factors limiting the quality of fried potato products. To understand the mechanisms of protein regulation for cold-induced sweetening in potato tubers, a comparative proteomic approach was used to analyse the differentially expressed proteins both during control (25 °C, 30 days) and cold treatment (4 °C, 30 days) using two-dimensional gel electrophoresis. Quantitative image analyses indicated that there were 25 protein spots with their intensities significantly altered more than twofold. Of these proteins, 9 were up-regulated, 13 were down-regulated, 2 were absent, and 1 was induced in the cold-stored tubers. The MALDI-TOF/TOF MS analyses led to the identification of differentially expressed proteins that are involved in several processes and might work cooperatively to maintain metabolic homeostasis in tubers during low-temperature storage. The preponderance of metabolic proteins reflects the inhibition of starch re-synthesis and the accumulation of sugars in carbon fluxes, linking starch–sugar conversion. The respiration-related proteins suggest the transfer of respiratory activity from aerobic respiration to anaerobic respiration in the cold-stored tubers. The proteins associated with defence appear to protect the tuber cells from low-temperature stress. Some heat shock proteins that act as chaperones also displayed a differential expression pattern, suggesting a potentially important role in cold-stored tubers, although their exact contribution remains to be investigated. The proposed hypothetical model might explain the interaction of these differentially expressed proteins that are associated with cold-induced sweetening in tubers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghaei K, Ehsanpour AA, Komatsu S (2008) Proteome analysis of potato under salt stress. J Proteome Res 7:4858–4868

    Article  PubMed  CAS  Google Scholar 

  • Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N (2008) Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res 7:3803–3817

    Article  PubMed  CAS  Google Scholar 

  • Ambard-Bretteville F, Sorin C, Rébeillé F, Hourton-Cabassa C, Colas des Francs-Small C (2003) Repression of formate dehydrogenase in Solanum tuberosum increases steady-state levels of formate and accelerates the accumulation of proline in response to osmotic stress. Plant Mol Biol 52:1153–1168

  • Araújo WL, Nunes-Nesi A, Trenkamp S, Bunik VI, Fernie AR (2008) Inhibition of 2-oxoglutarate dehydrogenase in potato tuber suggests the enzyme is limiting for respiration and confirms its importance in nitrogen assimilation. Plant Physiol 148:1782–1796

    Article  PubMed Central  PubMed  Google Scholar 

  • Barel G, Ginzberg I (2008) Potato skin proteome is enriched with plant defence components. J Exp Bot 59:3347–3357

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baysal T, Demirdoven A (2007) Lipoxygenase in fruits and vegetables: a review. Enzyme Microb Technol 40:491–496

    Article  CAS  Google Scholar 

  • Bethke PC, Busse JC (2008) Validation of a simple, colorimetric, microplate assay using amplex red for the determination of glucose and sucrose in potato tubers and other vegetables. Am J Potato Res 85:414–421

    Article  CAS  Google Scholar 

  • Bhaskar PB, Wu L, Busse JS, Whitty BR, Hamernik AJ, Jansky SH, Buell CR, Bethke PC, Jiang J (2010) Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol 154:939–948

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blenkinsop RW, Copp LJ, Yada RY, Marangoni AG (2002) Effect of chlorpropham (CIPC) on carbohydrate metabolism of potato tubers during storage. Food Res Int 35:651–655

    Article  CAS  Google Scholar 

  • Blenkinsop RW, Yada RY, Marangoni AG (2004) Metabolic control of low-temperature sweetening in potato tubers during postharvest storage. Hortic Rev 30:317–354

    CAS  Google Scholar 

  • Borgmann K, Sinka P, Frommer WB (1994) Changes in the two-dimensional protein pattern and in gene expression during the sink-to-source transition of potato tubers. Plant Sci 99:97–108

    Article  CAS  Google Scholar 

  • Brummell DA, Chen RK, Harris JC, Zhang H, Hamiaux C, Kralicek AV, McKenzie MJ (2011) Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants. J Exp Bot 62:3519–3534

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bunik VI, Fernie AR (2009) Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J 422:405–421

    Article  PubMed  CAS  Google Scholar 

  • Bykova NV, Stensballe A, Egsgaard H, Jensen ON, Moller IM (2003) Phosphorylation of formate dehydrogenase in potato tuber mitochondria. J Biol Chem 278:26021–26030

    Article  PubMed  CAS  Google Scholar 

  • Campbell M, Segear E, Beers L, Knauber D, Suttle J (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomics 18:317–328

    Article  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Hajirezaei MR, Zanor MI, Hornyik C, Debast S, Lacomme C, Fernie AD, Sonnewald U, Bornke F (2008) RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation. Plant Cell Environ 31:165–176

    Article  PubMed  CAS  Google Scholar 

  • Cottrell JE, Duffus CM, Paterson L, Mackay GR, Allison MJ, Bain H (1993) The effect of storage temperature on reducing sugar concentration and the activities of three amylolytic enzymes in tubers of the cultivated potato, Solanum tuberosum L. Potato Res 36:107–117

    Article  CAS  Google Scholar 

  • Cross JM, Clancy M, Shaw JR, Greene TW, Schmidt RR, Okita TW, Hannah LC (2004) Both subunits of ADP-glucose pyrophosphorylase are regulatory. Plant Physiol 135:137–144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dale MFB, Bradshaw JE (2003) Progress in improving processing attributes in potato. Trends Plant Sci 8:310–312

    Article  PubMed  CAS  Google Scholar 

  • De Wilde T, De Meulenaer B, Mestdagh F, Govaert Y, Vandeburie S, Ooghe W, Fraselle S, Demeulemeester K, Van Peteghem C, Calus A, Degroodt JM, Verhe RA (2005) Influence of storage practices on acrylamide formation during potato frying. J Agric Food Chem 53:6550–6557

    Article  PubMed  Google Scholar 

  • Delaplace P, Fauconnier ML, Sergeant K, Dierick JF, Oufir M, van der Wal F, America AH, Renaut J, Hausman JF, du Jardin P (2009) Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern. J Exp Bot 60:1273–1288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Espen L, Morgutti S, Cocucci SM (1999) Changes in the potato (Solanum tuberosum L.) tuber at the onset of dormancy and during storage at 23°C and 3°C. II. Evaluation of protein patterns. Potato Res 42:203–214

    Article  CAS  Google Scholar 

  • FAO (2011) World potato production and area. FAOSTAT http://faostat.fao.org

  • Feng JT, Liu YK, Song HY, Dai Z, Qin LX, Almofti R, Fang CY, Lu HJ, Yang PY, Tang ZY (2005) Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 17:4581–4588

    Article  Google Scholar 

  • Geigenberger P, Fernie AR (2006) Starch biosynthesis in the potato tuber. Food biochemistry and food processing. Blackwell Publishing, Oxford, pp 253–270

    Chapter  Google Scholar 

  • Geigenberger P, Still M, Fernie AR (2004) Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ 27:655–673

    Article  CAS  Google Scholar 

  • Hajirezaei M, Bornke F, Peisker M, Lerchi J, Sonnewald U (2003) Decreased sucrose content triggers starch breakdown and respiration in stored potato (Solanum tuberosum L.). J Exp Bot 382:477–488

    Article  Google Scholar 

  • Hamernik AJ, Hanneman RE, Jansky SH (2009) Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Sci 49:529–542

    Article  Google Scholar 

  • Hammond JBW, Burrel MM, Kruger NJ (1990) Effect of low temperature on the activity of phosphofructokinase from potato tubers. Planta 180:613–616

    Article  PubMed  CAS  Google Scholar 

  • Handa M, Guidotti G (1996) Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum). Biochem Biophys Res Commun 218:916–923

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137

    Article  PubMed  CAS  Google Scholar 

  • Heike G, Heibges A, Salamini E, Gebhardt C (2002) Members of the Kunitz-type protease inhibitor gene family of potato inhibits soluble tuber invertase in vitro. Potato Res 45:163–176

    Article  Google Scholar 

  • Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, Davy de Virville J, Rémy R, Colas des Francs-Small C (1998) Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol 116:627–635

    Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomics analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  PubMed  CAS  Google Scholar 

  • Koistinen KM, Hassinen VH, Gynther PAM, Lehesranta SJ, Keinänen SI, Kokko HI, Oksanen EJ, Tervahauta AI, Auriola S, Kärenlampi SO (2002) Birch PR-10c is induced by factors causing oxidative stress but appears not to confer tolerance to these agents. New Phytol 155:381–391

    Article  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prásil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322

    Article  PubMed  Google Scholar 

  • Lehesranta SJ, Davies HV, Shepherd LVT, Nunan N, McNicol JM, Auriola S, Koistinen KM, Suomalainen KM, Kokko HI, Kärenlampi SO (2005) Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol 138:1690–1699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lehesranta SJ, Davies HV, Shepherd LVT, Koistinen KM, Massat N, Nunan NM, McNicol JW, Kärenlampi SO (2006) Proteomic analysis of the potato tuber life cycle. Proteomics 6:6042–6052

    Article  PubMed  CAS  Google Scholar 

  • Li L, Paulo MJ, Strahwald J, Lübeck J, Hofferbert HR, Tacke E, Junghans H, Wunder J, Draffehn A, van Eeuwijk F (2008) Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theor Appl Genet 116:1167–1181

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279:2101–2108

    Article  PubMed  CAS  Google Scholar 

  • Lytovchenko A, Schauer N, Willmitzer L, Fernie AR (2005) Tuber-specific cytosolic expression of a bacterial phosphoglucomutase in potato (Solanum tuberosum L.) dramatically alters carbon partitioning. Plant Cell Physiol 46:588–597

    Article  PubMed  CAS  Google Scholar 

  • Malone JG, Mittova V, Ratcliffe RG, Kruger NJ (2006) The response of carbohydrate metabolism in potato tubers to low temperature. Plant Cell Physiol 47:1309–1322

    Article  PubMed  CAS  Google Scholar 

  • Manjunath S, Lee CH, Van Winkle P, Bailey-Serres J (1998) Molecular and biochemical characterization of cytosolic phosphoglucomutase in maize. Expression during development and in response to oxygen deprivation. Plant Physiol 117:997–1006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matsuura-Endo C, Kobayashi A, Noda T, Takigawa S, Yamauchi H, Mori M (2004) Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. J Plant Res 117:131–137

    Article  PubMed  CAS  Google Scholar 

  • McKenzie MJ, Sowokinos JR, Shea IM, Gupta SK, Lindlauf RR, Anderson JAD (2005) Investigations on the role of acid invertase and UDP-glucose pyrophosphorylase in potato clones with varying resistance to cold-induced sweetening. Am J Potato Res 82:231–239

    Article  CAS  Google Scholar 

  • Menendez CM, Ritter E, Schafer-Pregl R, Walkemeier B, Kalde A, Salamini F, Gebhardt C (2002) Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics 162:1423–1434

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mizuno M, Kamei M, Tsuchida H (1998) Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low-temperature storage. IUBMB Life 44:717–726

    Article  CAS  Google Scholar 

  • Mottram DS, Wedzicha BL, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419:448–449

    Article  PubMed  CAS  Google Scholar 

  • Müller-Thurgau H (1882) Über Zuckeranhäufung in Pflanzentheilen in Folge niederer Temperatur. Landwirtsch Jahrb 11:751–828

    Google Scholar 

  • Muttucumaru N, Elmore JS, Curtis T, Mottram DS, Parry MAJ, Halford NG (2008) Reducing acrylamide precursors in raw materials derived from wheat and potato. J Agric Food Chem 56:6167–6172

    Article  PubMed  CAS  Google Scholar 

  • Nägele T, Henkel S, Hörmiller I, Sauter T, Sawodny O, Ederer M, Heyer AG (2010) Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism. Plant Physiol 153:260–272

    Article  PubMed Central  PubMed  Google Scholar 

  • Navrátil O, Fischer L, Čmejlová J, Linhart M, Vacek J (2007) Decreased amount of reducing sugars in transgenic potato tubers and its influence on yield characteristics. Biol Plant 51:56–60

    Article  Google Scholar 

  • Palcy S, Chevet E (2006) Integrating forward and reverse proteomics to unravel protein function. Proteomics 6:5467–5480

    Article  PubMed  CAS  Google Scholar 

  • Plesner L (1995) Ecto-ATPases: identities and functions. Int Rev Cytol 158:141–214

    Article  PubMed  CAS  Google Scholar 

  • Pradet-Balade B, Boulme F, Beug H, Muliner EW, Garcia-Sanz JA (2001) Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci 26:225–229

    Article  PubMed  CAS  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    Article  PubMed  CAS  Google Scholar 

  • Reimholz R, Geiger M, Haake V, Deiting U, Krause KP, Sonnewald U, Stitt M (1997) Potato plants contain multiple forms of sucrose phosphate synthase, which differ in their tissue distributions, their levels during development, and their responses to low temperature. Plant Cell Environ 20:291–305

    Article  CAS  Google Scholar 

  • Reverberi M, Picardo M, Ricelli A, Camera E, Fanelli C, Fabbri AA (2001) Oxidative stress, growth factor production and budding in potato tubers during cold storage. Free Radic Res 35:833–841

    Article  PubMed  CAS  Google Scholar 

  • Riewe D, Grosman L, Fernie AR, Wucke C, Geigenberger P (2008) The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development. Plant Physiol 147:1092–1109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shah S, Lee YJ, Hannapel DJ, Rao AG (2011) Protein profiling of the potato petiole under short day and long day photoperiods. J Proteomics 74:212–230

    Article  PubMed  CAS  Google Scholar 

  • Shallenberger RS, Smith O, Treadway RH (1959) Role of sugars in the browning reaction in potato chips. J Agric Food Chem 7:274–277

    Article  CAS  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    Article  PubMed  CAS  Google Scholar 

  • Sowokinos JR (2001) Biochemical and molecular control of cold-induced sweetening in potatoes. Am J Potato Res 78:221–236

    Article  CAS  Google Scholar 

  • Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert M, Riediker S (2002) Acrylamide from Maillard reaction products. Nature 419:449–450

    Article  PubMed  CAS  Google Scholar 

  • Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    Article  PubMed  CAS  Google Scholar 

  • Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farré EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14:2191–2213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tran HT, Qian WQ, Hurley BA, She YM, Wang D, Plaxton WC (2010) Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana. Plant Cell Environ 33:1789–1803

    Article  PubMed  CAS  Google Scholar 

  • Trevanion SJ, Kruger NJ (1991) Effect of temperature on the kinetic properties of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tuber. J Plant Physiol 137:753–759

    Article  CAS  Google Scholar 

  • Wang W, Vioncur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trans Plant Sci 9:244–252

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Qiang X, Owsiany K, Zhang S, Thannhauser TW, Li L (2011) Evaluation of different multidimensional LC–MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. J Proteome Res 10:4647–4660

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by program for National Natural Science Foundation (30960205, 31171477), New Century Excellent Talents in University (NCET-07-0214), Innovative Basic Research Groups of Gansu (1308RJIA005), International S&T Cooperation Program of China (2014DFG31570), Gansu Provincial Key Laboratory of Aridland Crop Science (GSCS-02), Gansu Educational Science Foundation (1002-07), Sheng Tongsheng Science Technology and Innovation Foundation of Gansu Agricultural University (GSAU-STS-1223).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Wang or Feng Zhang.

Additional information

Communicated by M. Stobiecki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, L., Zhang, X., Zhao, Q. et al. Comparative proteomic analysis of cold-induced sweetening in potato (Solanum tuberosum L.) tuber. Acta Physiol Plant 36, 1197–1210 (2014). https://doi.org/10.1007/s11738-014-1496-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1496-x

Keywords

Navigation