Skip to main content
Log in

The role of nitric oxide in plant growth regulation and responses to abiotic stresses

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) has received much attention in the recent two decades, equally from human, animal and plant biologists. It was found to play a crucial role in human and animal physiology, immunological reactions and signal transduction. Its ubiquity and versatile properties caught the attention of plant physiologists and biochemists. This work presents an extensive review on the NO presence and action in plants. Various modes of NO synthesis are discussed and the most novel approaches to the elucidation of plant nitric oxide synthase (NOS) structure are presented. This review focuses on the physiological role of NO in regulation of plant growth and development, as well as in the process of gene expression. Special attention is given to the action of NO during abiotic stress and the antioxidant properties of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFLP:

cDNA-amplification fragment length polymorphism

AOX:

alternative oxidase

APOD:

ascorbate peroxidase

APR2:

5′-adenylylphosphosulfate reductase

cADPR:

cyclic ADP Ribose

CAT:

catalase

DAF-2DA:

4,5-diaminofluorescein diacetate

GA:

gibberellic acid

GDC:

glycine decarboxylase

GR:

glutathione reductase

kDa:

kilodaltons

GST:

glutathione-S-transferase

Hb:

hemoglobin

IAA:

indole-3-acetic acid

IPO:

ipomoelin

Lhca:

Lhcb-light-harvesting chlorophyll a/b binding proteins

MAPK:

mitogen activated protein kinase

MDA:

malondialdehyde

Ni:NOR:

nitrite: NO-reductase

NMMA:

NG-monomethyl-L-arginine

NO:

nitric oxide

NOS:

nitric oxide synthase

NR:

nitrate reductase

OGA:

oligogalacturonic acid

PAD4:

phytoalexin-deficient 4 protein

PAL:

phenylalanine ammonia lyase

PCD:

programmed cell death

phyA:

phytochrome A

phyB:

phytochrome B

POX:

general peroxidase

PQ:

paraquat

PR-1:

pathogenesis related protein 1

PTIO:

2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

ROS:

reactive oxygen species

RWC:

relative water content

SIN-1:

3-morpholinosydnonimine

SNAP:

S-nitroso-N-acetylpenicillamine

SNP:

sodium nitroprusside

SOD:

superoxide dismutase

XOR:

xanthine reductase

References

  • Arteel G.E., Briviba K., Sies H. 1999. Protection against peroxynitrite. FEBS Let. 445: 226–230.

    Article  CAS  Google Scholar 

  • Barroso J.B., Corpas F.J., Carreras A., Sandalio L.M., Valderrama R., Palma J.M., Lupianez J.A., del Rio L. 1999. Localization of nitric oxide synthase in plant peroxisomes. The Journal of Biol. Chem. 274: 36729–36733.

    Article  CAS  Google Scholar 

  • Batak I., Devi M., Giba Z., Grubisi A., Poff K.L., Konjevi R. 2002. The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-induced germination of Arabidopsis thaliana seeds. Seed Sci. Res. 12: 253–257.

    Article  CAS  Google Scholar 

  • Beligni M.V., Lamattina L. 1999. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues, Planta 208: 337–344.

    Article  CAS  Google Scholar 

  • Beligni M.V., Lamattina L. 2000. Nitric oxide stimulates seed germination, de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210: 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Beligni M.V., Lamattina L. 2001. Nitric oxide in plants: the history is just beginning. Plant Cell Environ. 24: 267–278.

    Article  CAS  Google Scholar 

  • Bellligni M.V., Lamattina L. 2002. Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant Cell Environ. 25: 737–743.

    Article  Google Scholar 

  • Beligni M.V., Fath A., Bethke P.C., Lamattina L., Jones R.L. 2002. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol. 129: 1642–1650.

    Article  PubMed  CAS  Google Scholar 

  • Brannan R.G., Connolly B.J., Decker E.A. 2001. Peroxynitrite: a potential initiator of lipid oxidation in food. Trends in Food Sci & Technol. 12: 164–173.

    Article  CAS  Google Scholar 

  • Capone R., Tiwari B.S., Levine A. 2004. Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis. Plant Physiol. Biochem. 42: 425–428.

    Article  PubMed  CAS  Google Scholar 

  • Caro A., Puntarulo S. 1998. Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Physiol. Plant. 104: 357–364.

    Article  CAS  Google Scholar 

  • Clarke A., Desikan R., Hurst R.D., Hancock J.T, Neill S.J. 2000. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. The Plant J. 24: 667–677.

    Article  CAS  Google Scholar 

  • Correa-Aragunde N., Graziano M., Lamattina L. 2004. Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218: 900–905.

    Article  PubMed  CAS  Google Scholar 

  • Cueto M., Hernandez-Perera O., Martin R., Bentura M.L., Rodrigo J., Lamas S., Golvano M.P. 1996. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Let. 398: 159–164.

    Article  CAS  Google Scholar 

  • Delledonne M., Xia Y., Dixon R.A., Lamb C. 1998. Nitric oxide functions as a signal in plant disease resistance, Nature 394: 585–588.

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M., Zeier J., Marocco A., Lamb C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. PNAS 98: 13454–13459.

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M., Murgia I., Ederle D., Sbicego P.F., Biondani A., Polverari A., Lamb C. 2002. Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resistance response. Plant Physiol. Biochem. 40: 605–610.

    Article  CAS  Google Scholar 

  • Desikan R., Griffiths R., Hancock J., Neill S. 2002. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. PNAS 99:16314–16318.

    Article  PubMed  CAS  Google Scholar 

  • Desikan R., Cheung M.K., Bright J., Henson D., Hancock J.T., Neill S.J. 2004. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J.Exp.Bot. 55: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Dordas C., Rivoal J., Hill R.D. 2003a. Plant haemoglobins, nitric oxide and hypoxic stress. Annals of Bot. 91: 173–178.

    Article  CAS  Google Scholar 

  • Dordas C., Hasinoff B.B., Igamberdiev A.U., Manach N., Rivoal J., Hill R.D. 2003b. Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. The Plant J. 35: 763–770.

    Article  CAS  Google Scholar 

  • Durner J., Wendehenne D., Klessig D.F. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. PNAS 95: 10328–10333.

    Article  PubMed  CAS  Google Scholar 

  • Foissner I., Wendehenne D., Langebartels C., Durner J. 2000. In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant Journal 23: 817–824.

    Article  PubMed  CAS  Google Scholar 

  • Garces H., Durzan D., Pedroso M.C. 2001. Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana. Annals of Bot. 87: 567–574.

    Article  CAS  Google Scholar 

  • Garcia-Mata C., Lamattina L. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 126: 1196–1204.

    Article  Google Scholar 

  • Garcia-Mata C., Lamattina L. 2002. Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol. 128: 790–792.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata C., Lamattina L. 2003. Abscisic acid, nitric oxide and stomatal closure — is nitrate reductase one of the missing links? Trends Plant Sci. 8: 20–26.

    Article  PubMed  CAS  Google Scholar 

  • Giba Z., Grubisic D., Todorovic S., Sajc L., Stojakovic D., Konjevic T. 1998. Effect of nitric oxide-releasing compounds on phytochrome-controlled germination of Empress tree seeds. Plant Growth Reg. 26: 175–181.

    Article  CAS  Google Scholar 

  • Gould K.S., Klinguer A., Pugin A., Wendehenne D. 2003. Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ. 26: 1851–1862.

    Article  CAS  Google Scholar 

  • Gouvea C.M.C.P. 1997. NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul. 21: 183–187.

    Article  CAS  Google Scholar 

  • Graziano M., Beligni M.V., Lamattina L. 2002. Nitric oxide improves internal iron availability in plants. Plant Physiol. 130: 1852–1859.

    Article  PubMed  CAS  Google Scholar 

  • Guo F-Q., Okamoto M., Crawford N.M. 2003. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302: 100–103.

    Article  PubMed  CAS  Google Scholar 

  • Haba P., Agüera E., Benitez L., Maldonado J.M. 2001. Modulation of nitrate reductase activity in cucumber (Cucumis sativus) roots. Plant Sci. 161: 231–237.

    Article  PubMed  Google Scholar 

  • Herbette S., Lenne C., Tourvieille D., Drevet J., Roeckel-Drevet P. 2003. Transcripts of sunflower antioxidant scavengers of the SOD and GPX families accumulate differentially in response to downy mildew infection, phytohormones, reactive oxygen species, nitric oxide, protein kinase and phosphatase inhibitors. Physiol. Plant. 119: 418–428.

    Article  CAS  Google Scholar 

  • Hu X., Neill S.J., Cai W., Tang Z. 2003. Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng. Funct. Plant Biol. 30: 901–907.

    Article  CAS  Google Scholar 

  • Huang X., Rad U., Durner J. 2002a. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215: 914–923.

    Article  PubMed  CAS  Google Scholar 

  • Huang X., Kiefer E., Rad U., Ernst D., Foissner I., Durner J. 2002b. Nitric oxide burst and nitric oxide-dependent gene induction in plants. Plant Physiol. Biochem. 40: 625–631.

    Article  CAS  Google Scholar 

  • Huang X., Stettmaier K., Michel C., Hutzler P., Mueller M.J., Durner J. 2004. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218: 938–946.

    Article  PubMed  CAS  Google Scholar 

  • Hung K.T., Chang C.J., Kao C.H. 2002. Paraquat toxicity is reduced by nitric oxide in rice leaves. J. Plant. Physiol. 159: 159–166.

    Article  CAS  Google Scholar 

  • Hung K.T., Kao C.H. 2003. Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J. Plant Physiol. 160: 871–879.

    Article  PubMed  CAS  Google Scholar 

  • Jih P.-J., Chen Y.-C., Jeng S.-T. 2003. Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Plant Physiol. 132: 381–389.

    Article  PubMed  CAS  Google Scholar 

  • Klessig D.F., Durner J., Noad R., Navarre D.A., Wendehenne D., Kumar D., Zhou J., Shah J., Zhang S., Kachroo P., Trifa Y., Pontier D., Lam E., Silva H. 2000. Nitric oxide and salicylic acid signaling in plant defense — defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose, PNAS 95: 8849–8855.

    Article  Google Scholar 

  • Kopyra M., Gwó d E.A. 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. Biochem. 41: 1011–1017.

    Article  CAS  Google Scholar 

  • Kumar D., Klessig D.F. 2000. Differential induction of tobacco MAP kinases by the defence signals nitric oxide, salicylic acid, ethylene and jasmonic acid, Mol. Plant Microbe Interact. 13: 347–351.

    Article  PubMed  CAS  Google Scholar 

  • Kuo W.N., Ku T.W., Jones D.L., Jn-Baptiste J. 1995. Nitric oxide synthase immunoreactivity in baker’s yeasts, lobster and wheat germ. Biochem. Arch. 11: 73–78.

    CAS  Google Scholar 

  • Lamattina L., Garcia-Mata C., Graziano M., Pagnussat G. 2003. Nitric Oxide: The versatility of an extensive signal molecule. Annu.Rev.Plant Biol. 54: 109–136.

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O., Gould K., Lecourieux D., Sequeira-Legrand A., Lebrun-Garcia A., Durner J., Pugin A., Wendehenne D. 2004. Analysis of nitric oxide signalling functins in tobacco cells challenged by the elicitor cryptogein. Plant Physiol. 135: 516–530.

    Article  PubMed  CAS  Google Scholar 

  • Laxalt A.M., Beligni M.V., Zamattena X. 1997. Nitric oxide preserves the level of chlorophyll in potato leaves infected with Phytophthora infestans. Eur. J. Plant Pathol. 103: 643–651.

    Article  CAS  Google Scholar 

  • Leshem Y.Y., Haramaty E. 1996. The characterization and contrasting effects of the nitric oxide free radical in vegatative stress and senescence of Pisum sativum Linn. foliage. J. Plant Physiol. 148: 258–263.

    CAS  Google Scholar 

  • Leshem Y.Y., Haramaty E., Iluz D., Malik Z., Sofer Y., Roitman L., Lesem Y. 1997. Effect of stress nitric oxide (NO): Interaction between chlorophyll fluorescence, galactolipid fluidity and lipoxygenese activity. Plant Physiol. Biochem. 35: 573–579.

    CAS  Google Scholar 

  • Leshem Y.Y., Wills R.B.H., Ku V.V.V. 1998. Evidence for the function of the free radical gas — nitric oxide (NO) — as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol. Biochem. 36: 825–833.

    Article  CAS  Google Scholar 

  • Leshem Y.Y. 2000. Nitric oxide in plants, Kluwer Academic Publishers, Dordrecht.

  • Lum H.K., Butt Y.K.C., Lo S.C.L. 2001. Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide 6: 205–213.

    Article  CAS  Google Scholar 

  • Mackerness S. A. H., John C.F., Jordan B., Thomas B. 2001. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Let. 489: 237–242.

    Article  CAS  Google Scholar 

  • Magalhaes J.R., Monte D.C., Durzan D. 2000. Nitric oxide and ethylene emission in Arabidopsis thaliana. Physiol. Mol. Biol. Plants. 2: 117–127.

    Google Scholar 

  • McDonald L.J., and Murad F. 1995. Nitric oxide and cGMP signaling. Adv. Pharmacol. 34: 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Millar A.H., Day D.A. 1996. Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Let. 398: 155–158.

    Article  CAS  Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci. 7: 405–410.

    Article  CAS  Google Scholar 

  • Modolo L.V., Cunha F.Q., Braga M.R., Salgado I. 2002. Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. eridionalis elicitor. Plant Physiol. 130: 1288–1297.

    Article  PubMed  CAS  Google Scholar 

  • Murgia I, Delledonne M., Soave C. 2002. Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant Journal 30: 521–528.

    Article  PubMed  CAS  Google Scholar 

  • Navarre D., Wendehenne D., Durner J., Noad R., Klessig D.F. 2000. Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol. 122: 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Neill S.J., Desikan R., Clarke A., Hancock J.T. 2002. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol. 128: 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Neill S.J., Desikan R., Hancock J.T. 2003. Nitric oxide signalling in plants. New Phytologist 159: 11–35.

    Article  CAS  Google Scholar 

  • Noritake T., Kawakita K., Doke N. 1996. Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol. 37: 113–116.

    CAS  Google Scholar 

  • Pagnussat G.C., Simontacchi M., Puntarulo S., Lamattina L. 2002. Nitric oxide is required for root organogenesis. Plant Physiol. 129: 954–956.

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat G.C., Lanteri M.L., Lamattina L. 2003. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol. 132: 1241–1248.

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat G.C., Lanteri M.L., Lombardo M.C., Lamattina L. 2004. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 135: 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Parani M., Rudrabhatla S., Myers R., Weirich H., Smith B., Leaman D.W., Goldman S.L. 2004. Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotech. J. 2: 359–366.

    Article  CAS  Google Scholar 

  • Pedroso M.C., Magalhaes J.R., Durzan D. 2000. Nitric oxide induces cell death in Taxus cells. Plant Sci. 157: 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Pinto M.C., Tommasi F., De Gara L. 2002. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiol. 130: 698–708.

    Article  PubMed  CAS  Google Scholar 

  • Polverari A., Molesini B., Pezzotti M., Buonaurio R., Marte M., Delledonne M. 2003. Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. MPMI 16: 1094–1105.

    PubMed  CAS  Google Scholar 

  • Prado A.M., Porterfield D.M., Feijó J.A. 2004. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131: 2707–2715.

    Article  PubMed  CAS  Google Scholar 

  • Rausch T., Kirsch M., Löw R., Lehr A., Vierck R., Zhigang A. 1996. Salt stress response of higher plants: the role of proton pumps and Na+/H+ antiporters. J. Plant Physiol. 148: 425–433.

    CAS  Google Scholar 

  • Ribeiro E.A., Cunha F.Q., Tamashiro W.M.S.C., Martins I.S. 1999. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Let. 445: 283–286.

    Article  CAS  Google Scholar 

  • Del Rio L.A., Corpas F.J., Barroso J.B. 2004. Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65: 783–792.

    Article  PubMed  CAS  Google Scholar 

  • Rockel P., Strube F., Rockel A., Wildt J., Kaiser W.M. 2002. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 53: 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas M.C., Delledonne M. 2003. Nitric oxide signaling in plant-pathogen interactions. IUBMB Life 55: 579–583.

    PubMed  CAS  Google Scholar 

  • Sakihama Y., Nakamura S., Yamasaki H. 2002. Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol. 43: 290–297.

    Article  PubMed  CAS  Google Scholar 

  • Scherer G.F.E. 2000. NO donors mimic and NO inhibitors inhibit cytokinin action in betalaine accumulation in Amaranthus caudatus. Plant Growth Reg. 32: 345–350.

    Article  CAS  Google Scholar 

  • Schmidt H.H.W.H., Walter U. 1994. NO at work, Cell 78: 919–925.

    Article  Google Scholar 

  • Sen S., Cheema I.R. 1995. Nitric oxide synthase and calmodulin reactivity in plant embryonic tissue. Biochem. Arch. 11: 221–27.

    CAS  Google Scholar 

  • Seregélyes C., Barna B., Hennig J., Konopka D., Pasternak T.P., Lukács N., Fehér A., Horváth G.V., Dudits D. 2003. Phytoglobins can interfere with nitric oxide functions during plant growth and pathogenic responses: a transgenic approach. Plant Sci. 165: 541–550.

    Article  CAS  Google Scholar 

  • Seregélyes C., Igamberdiev A.U., Maassen A., Hennig J., Dudits D., Hill R.D. 2004. NO-degradation by alfaalfa class 1 hemoglobin (Mhb1): a possible link to PR-1a gene expression in Mhb1-overproducing tobacco plants. FEBS Let. 571: 61–66.

    Article  CAS  Google Scholar 

  • Singh A.K., Sharma L., Mallick N. 2004. Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, Chlorella. Ecotoxicology and Environ. Safety 59: 223–227.

    CAS  Google Scholar 

  • Stöhr C., Ullrich W.R. 2002. Generation and possible roles of NO in plant roots and their apoplastic space. J. Exp. Bot. 53: 2293–2303.

    Article  PubMed  CAS  Google Scholar 

  • Tun N.N., Holk A., Scherer F.E. 2001. Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Let. 509: 174–176.

    Article  CAS  Google Scholar 

  • Uchida A., Jagendorf A.T., Hibino T., Takabe T., Takabe T. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 163: 515–523.

    Article  CAS  Google Scholar 

  • Van Camp W., Inzé D., Van Montagu M. 1998. H2O2 and NO: redox signals in disease resistance, Trends Plant Sci. 3: 330–334.

    Article  Google Scholar 

  • Wendehenne D., Pugin A., Klessig D., Durner J. 2001. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 6: 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D., Durner J., Klessig D.F. 2004. Nitric oxide: a new player in plant signalling and defence response. Current Opinion in Plant Biol. 7: 449–455.

    Article  CAS  Google Scholar 

  • Wojtaszek P. 2000. Nitric oxide in plants. To NO or not to NO. Phytochemistry 54: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Xing H., Tan L., An L., Zhao Z., Wang S., Zhang C. 2004. Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings: inverse correlation between leaf abscisic acid accumulation and leaf water loss. Plant Growth Reg. 42: 61068.

    Google Scholar 

  • Xu Y.C., Zhao B.L. 2003. The main origin of endogenous NO in higher non-leguminous plants. Plant Physiol. Biochem. 41: 833–838.

    Article  CAS  Google Scholar 

  • Yamasaki H., Sakihama Y. 2000. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Let. 468: 89–92.

    Article  CAS  Google Scholar 

  • Zemojtel T., Penzkofer T., Dandekar T., Schultz J. 2004. A novel conserved family of nitric oxide synthase? Trends Biochem Sci. 29: 224–226.

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z., Chen G., Zhang C. 2001. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Aust. J. Plant Physiol. 28: 1055–1061.

    CAS  Google Scholar 

  • Zhao Z., Zhang F., Guo J., Yang Y., Li B., Zhang L. 2004. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol. 134: 849–857.

    Article  PubMed  CAS  Google Scholar 

  • Zottini M., Formentin E., Scattolin M., Carimi F., Lo Schiavo F., Terzi M. 2002. Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Let. 515: 75–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Gwó d.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopyra, M., Gwó d, E.A. The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiol Plant 26, 459–473 (2004). https://doi.org/10.1007/s11738-004-0037-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-004-0037-4

Key words

Navigation