Skip to main content
Log in

Biocompatible, small-sized and well-dispersed gold nanoparticles regulated by silk fibroin fiber from Bombyx mori cocoons

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Biocompatible, small-sized but well-dispersed gold nanoparticles (Au NPs) remain a major challenge for their synthesis. Here a convenient solution impregnation technique is developed to prepare such Au NPs under the regulation of degummed silk fibroin fibers (SFFs) extracted from Bombyx mori cocoons. SFFs play multiple roles in the formation of Au NPs such as reactive substrate to capture AuCl4- ions by the chelation of -C = O, reducing agent for Au(0) by the reduction of -OH, and modifiers to render biocompatible Au NPs by some functional groups and biomolecules. The as-prepared Au NPs with a size of 7–10 nm are embedded in the solid SFF substrate, and can disperse well in the liquid system by the disintegration of SFFs into silk fibroin (SF) in a certain CaCl2 solution. The biocompatible Au NPs exhibit uniform small size and distribute stably in both solid and solution states, which have distinctive properties and functional advantages, and bring great convenience to their storage and transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayashi K, Nakamura M, Miki H, et al. Gold nanoparticle clusterplasmon-enhanced fluorescent silica core–shell nanoparticles for X-ray computed tomography-fluorescence dual-mode imaging of tumors. Chemical Communications, 2013, 49(46): 5334–5336

    Article  Google Scholar 

  2. Lin W, Yang C, Xue Z, et al. Controlled construction of gold nanoparticles in situ from β-cyclodextrin based unimolecular micelles for in vitro computed tomography. Journal of Colloid and Interface Science, 2018, 528: 135–144

    Article  Google Scholar 

  3. Ghosh P S, Kim C K, Han G, et al. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano, 2008, 2(11): 2213–2218

    Article  Google Scholar 

  4. Zhan F, Wang T, Iradukunda L, et al. A gold nanoparticle-based lateral flow biosensor for sensitive visual detection of the potato late blight pathogen, Phytophthora infestans. Analytica Chimica Acta, 2018, 1036(7): 153–161

    Article  Google Scholar 

  5. Zhang H, Zhang Y, Jin R, et al. Preparation and photothermal therapy of hyaluronic acid-conjugated Au nanoparticle-coated poly (glycidyl methacrylate) nanocomposites. Journal of Materials Science, 2018, 53(24): 16252–16262

    Article  Google Scholar 

  6. Han L, Zhang Y, Zhang Y, et al. A magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapy. Talanta, 2017, 171(15): 32–38

    Article  Google Scholar 

  7. Bodelón G, Costas C, Pérez-Juste J, et al. Gold nanoparticles for regulation of cell function and behavior. Nano Today, 2017, 13: 40–60

    Article  Google Scholar 

  8. Hong X, Tan C, Chen J, et al. Synthesis, properties and applications of one-and two-dimensional gold nanostructures. Nano Research, 2015, 8(1): 40–55

    Article  Google Scholar 

  9. Kneipp J, Kneipp H, McLaughlin M, et al. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Letters, 2006, 6(10): 2225–2231

    Article  Google Scholar 

  10. Zhang J, Gao Y, Alvarez-Puebla R A, et al. Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers. Advanced Materials, 2006, 18(24): 3233–3237

    Article  Google Scholar 

  11. Hurh J, Markus J, Kim Y J, et al. Facile reduction and stabilization of ginsenoside-functionalized gold nanoparticles: optimization, characterization, and in vitro cytotoxicity studies. Journal of Nanoparticle Research, 2017, 19(9): 313 (13 pages)

    Article  Google Scholar 

  12. Park J E, Kim M, Hwang J H, et al. Golden opportunities: plasmonic gold nanostructures for biomedical applications based on the second near-infrared window. Small Methods, 2017, 1(3): 1600032 (6 pages)

    Article  Google Scholar 

  13. Shukla R, Bansal V, Chaudhary M, et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 2005, 21(23): 10644–10654

    Article  Google Scholar 

  14. Xu C, Tung G A, Sun S. Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chemistry of Materials, 2008, 20(13): 4167–4169

    Article  Google Scholar 

  15. Wang P, Wang X, Wang L, et al. Interaction of gold nanoparticles with proteins and cells. Science and Technology of Advanced Materials, 2015, 16(3): 034610

    Article  Google Scholar 

  16. Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications, 1994, (7): 801–802

    Google Scholar 

  17. Chauhan A, Zubair S, Tufail S, et al. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. International Journal of Nanomedicine, 2011, 6: 2305–2319

    Google Scholar 

  18. Chandran P R, Naseer M, Udupa N, et al. Size controlled synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH. Nanotechnology, 2012, 23(1): 015602

    Article  Google Scholar 

  19. Vepari C, Kaplan D L. Silk as a biomaterial. Progress in Polymer Science, 2007, 32(8–9): 991–1007

    Article  Google Scholar 

  20. Rnjak-Kovacina J, DesRochers T M, Burke K A, et al. The effect of sterilization on silk fibroin biomaterial properties. Macromolecular Bioscience, 2015, 15(6): 861–874

    Article  Google Scholar 

  21. Koh L D, Cheng Y, Teng C P, et al. Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 2015, 46: 86–110

    Article  Google Scholar 

  22. Shen Y, Johnson M A, Martin D C. Microstructural characterization of Bombyx mori silk fibers. Macromolecules, 1998, 31(25): 8857–8864

    Article  Google Scholar 

  23. Mhuka V, Dube S, Nindi M M. Chemical, structural and thermal properties of Gonometa postica silk fibroin, a potential biomaterial. International Journal of Biological Macromolecules, 2013, 52: 305–311

    Article  Google Scholar 

  24. Jin Y, Zhang Y, Hang Y, et al. A simple process for dry spinning of regenerated silk fibroin aqueous solution. Journal of Materials Research, 2013, 28(20): 2897–2902

    Article  Google Scholar 

  25. Dong Q, Su H, Zhang D. In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. The Journal of Physical Chemistry B, 2005, 109(37): 17429–17434

    Article  Google Scholar 

  26. Li Z, Yang Y, Yao J, et al. A facile fabrication of silk/MoS2 hybrids for photothermal therapy. Materials Science and Engineering C, 2017, 79: 123–129

    Article  Google Scholar 

  27. Johari N, Hosseini H R M, Samadikuchaksaraei A. Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering. Materials Science and Engineering C, 2017, 79: 783–792

    Article  Google Scholar 

  28. Wei W, Zhang Y, Shao H, et al. Post-treatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution. Journal of Materials Research, 2011, 26 (9): 1100–1106

    Google Scholar 

  29. Shen T, Wang T, Cheng G, et al. Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure. International Journal of Biological Macromolecules, 2018, 113: 458–463

    Article  Google Scholar 

  30. Yang Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 2007, 28(9): 1643–1652

    Article  Google Scholar 

  31. McGrath K, Kaplan D, eds. Protein-based Materials. Boston, USA: Birkhäuser, 1997

    Book  Google Scholar 

  32. Riabinina D, Zhang J, Chaker M, et al. Control of plasmon resonance of gold nanoparticles via excimer laser irradiation. Applied Physics A: Materials Science & Processing, 2011, 102(1): 153–160

    Article  Google Scholar 

  33. Liu S, Chen G, Prasad P N, et al. Synthesis of monodisperse Au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chemistry of Materials, 2011, 23 (18): 4098–4101

    Article  Google Scholar 

  34. Yu H, Chen M, Rice P M, et al. Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Letters, 2005, 5(2): 379–382

    Article  Google Scholar 

  35. Zhu H, Du M, Zou M, et al. Facile and green synthesis of welldispersed Au nanoparticles in PAN nanofibers by tea polyphenols. Journal of Materials Chemistry, 2012, 22(18): 9301–9307

    Article  Google Scholar 

  36. Dykman L A, Khlebtsov N G. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, 2012, 41(6): 2256–2282

    Article  Google Scholar 

  37. Wilcoxon J P, Martin J E, Parsapour F, et al. Photoluminescence from nanosize gold clusters. The Journal of Chemical Physics, 1998, 108(21): 9137–9143

    Article  Google Scholar 

  38. Zhou C, Yu J, Qin Y, et al. Grain size effects in polycrystalline gold nanoparticles. Nanoscale, 2012, 4(14): 4228–4233

    Article  Google Scholar 

  39. Zhang X. Gold nanoparticles: Recent advances in the biomedical applications. Cell Biochemistry and Biophysics, 2015, 72(3): 771–775

    Article  Google Scholar 

  40. Zhou C, Long M, Qin Y P, et al. Luminescent gold nanoparticles with efficient renal clearance. Angewandte Chemie-International Edition, 2011, 50(14): 3168–3172

    Article  Google Scholar 

  41. Wei J, Zhu Y, Peng T, et al. Analyses on FT-IR and Raman spectra of sericin fixed silk fibres. Textile Auxiliaries, 2004, 21(3): 51–53 (in Chinese)

    Google Scholar 

  42. Su H, Han J, Dong Q, et al. In situ bioinspired synthesis of silver chloride nanocrystals on silk fibroin fibers. Applied Physics A: Materials Science & Processing, 2011, 102(2): 429–434

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key Research and Development Program of China (Grant No. 2017YFB1201005), the National Natural Science Foundation of China (Grant Nos. 51572169 and 51672175), and the Shanghai Science and Technology Committee (Grant Nos. 17ZR1441400 and 18JC1410500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilan Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Chen, S., Su, H. et al. Biocompatible, small-sized and well-dispersed gold nanoparticles regulated by silk fibroin fiber from Bombyx mori cocoons. Front. Mater. Sci. 13, 126–132 (2019). https://doi.org/10.1007/s11706-019-0456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-019-0456-1

Keywords

Navigation