Skip to main content

Advertisement

Log in

Effects and Mechanisms of Vagal Nerve Stimulation on Body Weight in Diet-Induced Obese Rats

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Vagal nerve stimulation (VNS) has recently been indicated as a novel method for treating obesity. However, the optimal stimulation parameters were unknown and mechanisms were poorly understood. The aim of this study was to investigate the effects of VNS on food intake and body weight in diet-induced obesity (DIO) rats and its possible mechanism involving autonomic functions and gut hormones.

Methods

Ten control rats and 16 DIO rats were chronically implanted with one pair of electrodes in the subdiaphragmatic vagal nerve. VNS with different stimulation parameters and sham-VNS were performed in control rats. In a chronic study, 8 DIO rats were applied with VNS and another 8 DIO rats were treated with sham-VNS for 4 weeks. Food intake, body weight, gastric emptying, heart rate variability (HRV), and gut hormones were evaluated.

Results

In DIO rats, the food intake (p < 0.001) and body weight (p < 0.001) were significantly decreased in the VNS group, compared with the sham-VNS group. VNS decreased the sympathovagal ratio (p = 0.003) and increased vagal activity (p = 0.032) assessed from the spectral analysis of HRV. It also increased plasma levels of glucagon-like peptide-1 (p = 0.012), polypeptide YY (p = 0.008), and pancreatic polypeptide (p = 0.008) in DIO rats. Physiologically, VNS delayed solid gastric emptying (p < 0.001) and increased gastric volume (p = 0.004).

Conclusion

VNS with appropriate parameters reduced food intake and body weight by delaying gastric emptying mediated via the enhancement of vagal activity and release of anorexigenic hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WHO. Obesity and overweight. Fact sheet N311. Geneva: World Health Organization; 2015.

    Google Scholar 

  2. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96.

    Article  Google Scholar 

  3. Payab M, Hasani-Ranjbar S, Aletaha A, et al. Efficacy, safety, and mechanisms of herbal medicines used in the treatment of obesity: a protocol for systematic review. Medicine. 2018;97(1):e8825. https://doi.org/10.1097/MD.0000000000008825.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23:427–36. https://doi.org/10.1007/s11695-012-0864-0.

    Article  PubMed  Google Scholar 

  5. Acosta A, Abu Dayyeh BK, Port JD, et al. Recent advances in clinical practice challenges and opportunities in the management of obesity. Gut. 2014;63:687–95. https://doi.org/10.1136/gutjnl-2013-306235.

    Article  CAS  PubMed  Google Scholar 

  6. Stefan H, Kreiselmeyer G, Kerling F, et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia. 2012;53:115–8. https://doi.org/10.1111/j.1528-1167.2012.03492.x.

    Article  Google Scholar 

  7. Noe KH, Locke DEC, Sirven JI. Treatment of depression in patients with epilepsy. Curr Treat Options Neurol. 2011;13:371–9. https://doi.org/10.1007/s11940-011-0127-8.

    Article  PubMed  Google Scholar 

  8. De Ferrari GM, Crijns HJ, Borggrefe M, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32:845–77. https://doi.org/10.1093/eurheartj/ehq391.

    Article  CAS  Google Scholar 

  9. Merrill CA, Jonsson M, Minthon L, et al. Vagus nerve stimulation in patients with Alzheimer’s disease: additional follow-up results of a pilot study through 1 year. The Journal of Clinical Psychiatry. 2006;67(8):1171–8.

    Article  CAS  PubMed  Google Scholar 

  10. Finocchi C, Villani V, Casucci G. Therapeutic strategies in migraine patients with mood and anxiety disorders: clinical evidence. Neurol Sci. 2010;31:95–8. https://doi.org/10.1007/s10072-010-0297-2.

    Article  Google Scholar 

  11. Engineer ND, Riley JR, Seale JD, et al. Reversing pathological neural activity using targeted plasticity. Nature. 2011;470:101–4. https://doi.org/10.1038/nature09656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bodenlos JS, Kose S, Borckardt JJ, et al. Vagus nerve stimulation acutely alters food craving in adults with depression. Appetite. 2007;48:145–53. https://doi.org/10.1016/j.appet.2006.07.080.

    Article  PubMed  Google Scholar 

  13. Bodenlos JS, Kose S, Borckardt JJ, et al. Vagus nerve stimulation and emotional responses to food among depressed patients. J Diabetes Sci Technol. 2007;1:771–9. https://doi.org/10.1177/193229680700100524.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Burneo JG, Faught E, Knowlton R, et al. Weight loss associated with vagus nerve stimulation. Neurology. 2002;59:463–4. https://doi.org/10.1212/wnl.59.3.463.

    Article  CAS  PubMed  Google Scholar 

  15. Pardo JV, Sheikh SA, Kuskowski MA, et al. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes. 2007;31:1756–9. https://doi.org/10.1038/sj.ijo.0803666.

    Article  CAS  Google Scholar 

  16. Park MI, Camilleri M. Gastric motor and sensory functions in obesity. Obes Res. 2005;13:491–500. https://doi.org/10.1038/oby.2005.51.

    Article  PubMed  Google Scholar 

  17. Bewick GA. Bowels control brain: gut hormones and obesity. Biochem Med (Zagreb). 2012;22:283–97.

    Article  CAS  Google Scholar 

  18. Dai F, Lei Y, Li S, et al. Desvenlafaxine succinate ameliorates visceral hypersensitivity but delays solid gastric emptying in rats. Am J Physiol Gastrointest Liver Physiol. 2013;305:333–9. https://doi.org/10.1152/ajpgi.00224.2012.

    Article  CAS  Google Scholar 

  19. Lu CL, Zou X, Orr WC, et al. Postprandial changes of sympathovagal balance measured by heart rate variability. Dig Dis Sci. 1999;44:857–61.

    Article  CAS  PubMed  Google Scholar 

  20. Kruger C, Kalenka A, Haunstetter A, et al. Baroreflex sensitivity and heart rate variability in conscious rats with myocardial infarction. Am J Phys. 1997;273:2240–7. https://doi.org/10.1152/ajpheart.1997.273.5.H2240.

    Article  Google Scholar 

  21. Masi EB, Valdés-Ferrer SI, Steinberg BE. The vagus neurometabolic interface and clinical disease. Int J Obes. 2018;42:1101–11. https://doi.org/10.1038/s41366-018-0086-1.

    Article  Google Scholar 

  22. de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol. 2016;594:5791–815. https://doi.org/10.1113/JP271538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Covasa M, Ritter RC. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol. 2000;278:166–70. https://doi.org/10.1152/ajpregu.2000.278.1.R166.

    Article  Google Scholar 

  24. Bugajski AJ, Gil K, Ziomber A, et al. Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats. J Physiol Pharmacol. 2007;58:5–12.

    PubMed  Google Scholar 

  25. Val-Laillet D, Biraben A, Randuineau G, et al. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite. 2010;55:245–52. https://doi.org/10.1016/j.appet.2010.06.008.

    Article  CAS  PubMed  Google Scholar 

  26. Liu J, Jin H, Foreman RD, et al. Chronic electrical stimulation at acupoints reduces body weight and improves blood glucose in obese rats via autonomic pathway. Obes Surg. 2015;25:1209–16. https://doi.org/10.1007/s11695-014-1521-6.

    Article  PubMed  Google Scholar 

  27. Wan X, Yin J, Foreman R, et al. An optimized IES method and its inhibitory effects and mechanisms on food intake and body weight in diet-induced obese rats: IES for obesity. Obes Surg. 2017;27:3215–22. https://doi.org/10.1007/s11695-017-2743-1.

    Article  PubMed  Google Scholar 

  28. Li S, Maude-Griffin R, Sun Y, et al. Food intake and body weight responses to intermittent vs. continuous gastric electrical stimulation in diet-induced obese rats. Obes Surg. 2013;23:71–9. https://doi.org/10.1007/s11695-012-0773-2.

    Article  CAS  PubMed  Google Scholar 

  29. Kro’lczyk G, Laskiewicz J, Sobocki J, et al. The effects of baclofen on the feeding behaviour and body weight of vagally stimulated rats. J Physiol Pharmacol. 2005;56:121–31.

    Google Scholar 

  30. Ikramuddin S, Blackstone RP, Brancatisano A, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA. 2014;312:915–22. https://doi.org/10.1001/jama.2014.10540.

    Article  CAS  PubMed  Google Scholar 

  31. Gil K, Bugajski A, Thor P. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. J Physiol Pharmacol. 2011;62:637–46.

    CAS  PubMed  Google Scholar 

  32. Gil K, Bugajski A, Kurnik M, et al. Electrical chronic vagus nerve stimulation activates the hypothalamic-pituitary-adrenal axis in rats fed high-fat diet. Neuro Endocrinol Lett. 2013;34:314–21.

    CAS  PubMed  Google Scholar 

  33. Krolczyk G, Zurowski D, Sobocki J, et al. Effects of continuous microchip (MC) vagal neuromodulation on gastrointestinal function in rats. J Physiol Pharmacol. 2001;52:705–15.

    CAS  PubMed  Google Scholar 

  34. Matyja A, Thor PJ, Sobocki J, et al. Effects of vagal pacing on food intake and body mass in pigs. Folia Med Cracov. 2004;45:55–62.

    PubMed  Google Scholar 

  35. Osharina V, Bagaev V, Wallois F, et al. Autonomic response and Fos expression in the NTS following intermittent vagal stimulation: importance of pulse frequency. Auton Neurosci. 2006;126–127:72–80. https://doi.org/10.1016/j.autneu.2006.03.011.

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz TW. Pancreatic polypeptide: a hormone under vagal control. Gastroenterology. 1983;85:1411–25.

    Article  CAS  PubMed  Google Scholar 

  37. Vijayvargiya P, Jameie-Oskooei S, Camilleri M,et al. Association between delayed gastric emptying and upper gastrointestinal symptoms: a systematic review and meta-analysis. Gut 2018;1–10. https://doi.org/10.1136/gutjnl-2018-316405.

  38. Bray GA. Afferent signals regulating food intake. Proc Nutr Soc. 2000;59:373–84.

    Article  CAS  PubMed  Google Scholar 

  39. Monteiro MP, Batterham RL. The importance of the gastrointestinal tract in controlling food intake and regulating energy balance. Gastroenterology. 2017;152:1707–17. https://doi.org/10.1053/j.gastro.2017.01.053.

    Article  PubMed  Google Scholar 

  40. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39. https://doi.org/10.1152/physrev.00034.2006.

    Article  CAS  PubMed  Google Scholar 

  41. Herrmann C, Goke R, Richter G, et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56:117–26. https://doi.org/10.1159/000201231.

    Article  CAS  PubMed  Google Scholar 

  42. Johannessen H, Revesz D, Kodama Y, et al. Vagal blocking for obesity control: a possible mechanism-of-action. Obes Surg. 2017;27:177–85. https://doi.org/10.1007/s11695-016-2278-x.

    Article  PubMed  Google Scholar 

  43. Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30. https://doi.org/10.1056/NEJMoa012908.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Fei Dai: Conduct the experiment; data collection and drafting of the manuscript.

Jieyun Yin: Data analysis.

Jiande DZ Chen: Study design, critical revision of the manuscript.

Corresponding author

Correspondence to Jiande D. Z. Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This research was approved by the Animal Care and Use Committee of the Veterans Affairs Medical Center (Oklahoma City, OK).

Informed Consent

Does not apply.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, F., Yin, J. & Chen, J.D.Z. Effects and Mechanisms of Vagal Nerve Stimulation on Body Weight in Diet-Induced Obese Rats. OBES SURG 30, 948–956 (2020). https://doi.org/10.1007/s11695-019-04365-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-019-04365-7

Keywords

Navigation