Skip to main content
Log in

Chemical composition, antioxidant, antimicrobial and cytotoxic activities of bioactive compounds extracted from Opuntia dillenii cladodes

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Opuntia dillenii has been used in folk medicine as a natural remedy for its diverse biological activities and bioactive compounds. The present study aimed to quantify the bioactive substances of cladode extracts (aqueous and ethanolic) of O. dillenii from Djerba Island, Tunisia and evaluate their antioxidant, antimicrobial and cytotoxic potentials. The results showed that O. dillenii cladodes had a high amount of total phenolic content (TPC) and total flavonoid content (TFC). Interestingly, by LC-MS analysis, we found that most of the phenolic and volatile compounds were present in the ethanolic extract. Indeed, quinic acid (58.78 µg/g), quercetin (11.5 µg/g), rutin (7.02 µg/g), luteolin (4.93 µg/g), cirsiliol (3.22 µg/g) were the major phenolic compounds in O. dillenii ECE. GC-MS analysis of O. dillenii ACE and ECE revealed that n-hexadecanoic acid (13.08%), and stigmastan-3, 5-diene (6.97%) were the main volatile compounds detected in ECE. Correlation analysis showed that the TPC and TFC were significantly correlated with the antioxidant, antimicrobial and cytotoxic activities. Staphylococcus aureus, Micrococcus luteus, and Fusarium oxysporum were found to be the most sensitive strains. Finally, the human colon carcinoma cell line Caco-2 was more sensitive to aqueous and ethanolic extracts with an IC50 = 50.89 ± 0.01 µg/mL and IC50 = 40 ± 0.01 µg/mL, respectively than K-562 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAE:

Ascorbic acid equivalent

ABTS:

2,2′-azino-bis-3-ethylbenzothiazoline-6- sulfonic acid

ACE:

Aqueous cladode extract

Caco-2:

Human colon carcinoma cells

CATE:

Catechin equivalent

DMSO:

Dimethyl sulfoxide

DMEM:

Dulbecco’s Modified Eagle Medium

DPPH:

2, 2-diphenyl-1-picrylhydrazyl

Dw:

Dry weight

ECE:

Ethanolic cladode extract

FRAP:

Ferric reducing antioxidant power

GAE:

Gallic acid equivalent

K-562:

Human myelogenous leukemia cells

LC-MS:

Liquid chromatography-mass spectrometry

MBC:

Minimum bactericidal concentration

MFC:

Minimal fungicidal concentration

MHA:

Mueller Hinton agar

MIC:

Minimal inhibitory concentration

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NIST:

National institute of standards and technology

QE:

Quercetin equivalent

PDA:

Potatoes dextrose agar

SIM:

Selected ions monitoring

TAC:

Total antioxidant capacity

TCA:

Trichloroacetic acid

TEAC:

Trolox equivalent antioxidant capacity

TFC:

Total flavonoid content

TPC:

Total polyphenolic content

Trolox:

6-hydroxy-2,5,7,8 -tetra methyl-chroman-2-carboxylic acid

References

  1. L.A. Pham-Huy, H. He, C. Pham-Huy, Int. J. Biomed. Sci. 4, 89–96 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Phaniendra, D.B. Jestadi, L. Periyasamy, Ind. J. Clin. Biochem. 30, 11–26 (2015)

    CAS  Google Scholar 

  3. C. Sarikurkcu, B. Kirkan, M.S. Ozer, O. Ceylan, N. Atilgan, M. Cengiz, B. Tepe, Ind. Crops Prod. 115, 323–329 (2018)

    CAS  Google Scholar 

  4. J.A. Fernández-lópez, L. Almela, Plant Foods Hum. Nutr. 65, 253–259 (2010)

    PubMed  Google Scholar 

  5. M.S. Santos, A.B. Rosa, C. Héliès-Toussaint, F. Guéraud, A. Nègre-Salvayre, Oxid. Med. Cell. Longev. (2017). https://doi.org/10.1155/2017/8634249

    Article  PubMed  PubMed Central  Google Scholar 

  6. L. Santos-Zea, J.A. Guti, S.O. Serna-Saldivar, D. Monterrey, A. Eugenio, G. Sada, J. Agric. Food Chem. 59, 7054–7061 (2011)

    CAS  PubMed  Google Scholar 

  7. F. Siddiqui, S. Naqvi, L. Abidi, S. Faizi, L. Avesi, T. Mirza, A.D. Farooq, J. Ethnopharmacol. 182, 221–234 (2016)

    CAS  PubMed  Google Scholar 

  8. S.F. Chang, C.L. Hsieh, G.C. Yen, Food Chem. 106, 569–575 (2008)

    CAS  Google Scholar 

  9. J. Katanić, F. Yousfi, M.C. Caruso, S. Matić, D.M. Monti, E.H. Loukili, T. Boroja, V. Mihailović, F. Galgano, P. Imbimbo, G. Petruk, M. Bouhrim, M. Bnouham, M. Ramdani, Food Biosci. 30, 100410 (2019)

    Google Scholar 

  10. P. Kalegowda, A.S. Chauhan, S.M. Nanjaraj Urs, Carbohydr. Polym. 157, 1057–1064 (2017)

    CAS  PubMed  Google Scholar 

  11. N.U. Chinedu, B. Amadi, A. Peter, Food Sci. Technol. 5, 106–112 (2017)

    CAS  Google Scholar 

  12. L.Y. Zhao, Q.J. Lan, Z.C. Huang, L.J. Ouyang, F.H. Zeng, Phytomedicine 18, 661–668 (2011)

    CAS  PubMed  Google Scholar 

  13. M.I. Umar, A. Javeed, M. Ashraf, A. Riaz, M.M. Mukhtar, S. Afzal, R. Altaf, Int. J. Food Prop. 16, 114–124 (2013)

    Google Scholar 

  14. P.B. Ratnaweera, E.D. de Silva, D.E. Williams, R.J. Andersen, BMC Complement. Altern. Med. 15, 1–7 (2015)

    CAS  Google Scholar 

  15. L.Y. Zhao, W. Huang, Q.X. Yuan, J. Cheng, Z.C. Huang, L.J. Ouyang, F.H. Zeng, Food Chem. 134, 964–971 (2012)

    CAS  PubMed  Google Scholar 

  16. M.S. Ahmed, N.D. El Tanbouly, W.T. Islam, A.A. Sleem, A.S. El Senousy, Phytother. Res. 19, 807–809 (2005)

    CAS  PubMed  Google Scholar 

  17. R. Saleem, M. Ahmad, A. Azmat, S.I. Ahmad, Z. Faizi, L. Abidi, S. Faizi, Biol. Pharm. Bull. 28, 1844–1851 (2005)

    CAS  PubMed  Google Scholar 

  18. Y. Qiu, Y. Chen, Y. Pei, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 50, 1507–1510 (2002)

    CAS  Google Scholar 

  19. C. Betancourt, M.J. Cejudo-Bastante, F.J. Heredia, N. Hurtado, Food Res. Int. 101, 173–179 (2017)

    CAS  PubMed  Google Scholar 

  20. N. Cicco, M.T. Lanorte, M. Paraggio, M. Viggiano, V. Lattanzio, Microchem. J. 91, 107–110 (2009)

    CAS  Google Scholar 

  21. I. Palacios, M. Lozano, C. Moro, M. D’Arrigo, M.A. Rostagno, J.A. Martínez, A. García-Lafuente, E. Guillamón, A. Villares, Food Chem. 128, 674–678 (2011)

    CAS  Google Scholar 

  22. K.A. Muhammad, Tikrit J. Agr. Sci. 19, 93–102 (2019)

    Google Scholar 

  23. F.A. Ayaz, S. Hayirlioglu-Ayaz, J. Gruz, O. Novak, M. Strnad, J. Agric. Food Chem. 53, 8116–8122 (2005)

    CAS  PubMed  Google Scholar 

  24. R. Rahmani, S. Beaufort, A.S. Villarreal-Soto, P. Taillandier, J. Bouajila, M. Debouba, Food Biosci. (2019). https://doi.org/10.1016/j.fbio.2019.100414

    Article  Google Scholar 

  25. R.S. Phatak, A. Hendre, J Pharmacogn. Phytochem. 2, 32–35 (2014)

    Google Scholar 

  26. W.K. Darkwah, Y. Ao, M.B. Adinortey, A. Weremfo, F.K. Abrokwah, E. Afriyie, Free Radic. Antioxid. 8, 82–88 (2018)

    CAS  Google Scholar 

  27. A. Yildirim, A. Mavi, A.A. Kara, J. Agric. Food Chem. 49, 4083–4089 (2001)

    CAS  PubMed  Google Scholar 

  28. G.C. Jagetia, M.S. Baliga, J. Med. Food. 7, 343–348 (2004)

    PubMed  Google Scholar 

  29. A. Ben Hsouna, M. Trigui, R. Ben Mansour, R. Mezghani, M. Damak, S. Jaoua, Int. J. Food Microbiol. 148, 66–72 (2011)

    CAS  Google Scholar 

  30. M. Trigui, A. Ben Hsouna, S. Tounsi, S. Jaoua, Ind. Crops Prod. 41, 150–157 (2013)

    CAS  Google Scholar 

  31. A. Daoud, D. Malika, S. Bakari, N. Hfaiedh, K. Mnafgui, A. Kadri, N. Gharsallah, Arab. J. Chem. 12, 3075–3086 (2015)

    Google Scholar 

  32. E.M. Abdallah, A. Ben Hsouna, K.S. Al-khalifa, Afr. J. Biotechnol. 11, 11535–11542 (2012)

    CAS  Google Scholar 

  33. W.R. Diao, Q.P. Hu, H. Zhang, J.G. Xu, Food Control. 35, 109–116 (2014)

    CAS  Google Scholar 

  34. M. Boulaaba, K. Mkadmini, S. Tsolmon, J. Han, A. Smaoui, K. Kawada, R. Ksouri, H. Isoda, C. Abdelly, Evid. Based Complement. Altern. Med. 2013, 11 (2013)

    Google Scholar 

  35. Q. Diem, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, J. Food Drug Anal. 22, 296–302 (2013)

    Google Scholar 

  36. L.P. Méndez, F.T. Flores, J.D. Martín, E.M.R. Rodríguez, C. Díaz Romero, Food Chem. 188, 393–398 (2015)

    PubMed  Google Scholar 

  37. T. Guevara-Figueroa, H. Jiménez-Islas, M.L. Reyes-Escogido, A.G. Mortensen, B.B. Laursen, L.W. Lin, A. De León-Rodríguez, I.S. Fomsgaard, A.P. Barba de la Rosa, J. Food Compos. Anal. 23, 525–532 (2010)

    CAS  Google Scholar 

  38. O. Izuegbuna, G. Otunola, G. Bradley, PloS One 14, 1–27 (2019)

    Google Scholar 

  39. R. Ksouri, W. Megdiche, H. Falleh, N. Trabelsi, M. Boulaaba, A. Smaoui, C. Abdelly, C. R. Biol. 331, 865–873 (2008)

    CAS  PubMed  Google Scholar 

  40. P.R. Zanello, A.C. Koishi, C.O. Rezende Júnior, L.A. Oliveira, A.A. Pereira, M. Vieira de Almeida, C.N. Duarte dos Santos, J. Bordignon, Virol. J. 12, 223 (2015)

    PubMed  PubMed Central  Google Scholar 

  41. X. He, H.L. Rui, J. Agric. Food Chem. 54, 7069–7074 (2006)

    CAS  PubMed  Google Scholar 

  42. A. Boutakiout, D. Elothmani, H. Hanine, M. Mahrouz, D. Le Meurlay, I. Hmid, S. Ennahli, J. Saudi Soc. Agric. Sci. 17, 471–480 (2018)

    Google Scholar 

  43. J. Jiang, Y. Li, Z. Chen, Z. Min, F. Lou, Steroids 1, 1073–1077 (2006)

    Google Scholar 

  44. B. Parthipan, M.G.T. Suky, V.R. Mohan, J. Pharmacogn. Phytochem. 4, 216–222 (2015)

    Google Scholar 

  45. H.J. Altameme, I.H. Hameed, N.A. Abu-Serag, Malays. Appl. Biol. 44, 47–58 (2015)

    Google Scholar 

  46. V. Prabhadevi, S.S. Sahaya, M. Johnson, B. Venkatramani, N. Janakiraman, Asian Pac. J. Trop. Biomed. 2, 550–554 (2012)

    Google Scholar 

  47. P. Singariya, K.K. Mourya, P. Kumar, Plant Arch. 15, 1065–1074 (2015)

    Google Scholar 

  48. E. Karimi, P. Mehrabanjoubani, A. Es-Haghi, J. Chamani, Pharm. Chem. J. 53, 741–747 (2019)

    CAS  Google Scholar 

  49. E. Köksal, E. Bursal, İ Gülçin, M. Korkmaz, A.C. Gören, S.H. Alwasel, Int. J. Food Prop. 20, 514–525 (2017)

    Google Scholar 

  50. M. Hazzit, A. Baaliouamer, A.R. Veríssimo, M.L. Faleiro, M.G. Miguel, Food Chem. 116, 714–721 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the Tunisian Ministry of Higher Education and Scientific research through the Research Unit “Valorization of Active Biomolecules” in Higher Institute of Applied Biology Medenine, University of Gabes. Authors are very grateful, also, to Pr. Rachid Chemli, (Professor at the University of Pharmacy, Laboratory of Pharmacognosy-Phytotherapy, Monastir, Tunisia) for the identification of the plant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabrine Ben Lataief or Lazhar Zourgui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Lataief, S., Zourgui, MN., Rahmani, R. et al. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of bioactive compounds extracted from Opuntia dillenii cladodes. Food Measure 15, 782–794 (2021). https://doi.org/10.1007/s11694-020-00671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00671-2

Keywords

Navigation