Skip to main content
Log in

Mechanochemical effects of ultrasound on mung bean starch and its octenyl succinic anhydride modified starch

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the mechanochemical effects of ultrasound on the quality of mung bean starch and its octenyl succinic anhydride modified starch (OSAS) in an attempt to produce high quality starch products. In this paper, mung bean starch was treated by ultrasound for 0, 1, 8, 32 and 60 min. Then, under the same ultrasonic treatment conditions, OSAS was prepared by ultrasonic assisted. During the esterification process, the suspensions were also treated for 0, 1, 8, 32 and 60 min, respectively. The results showed that the structures of modified mung bean starch became loose and the crystallinity decreased from 24.2 ± 0.05a% to 21.6 ± 0.02c% after 1 min of ultrasonic treatment. The Maltese crosses of starch granules became blurred and the gelatinization enthalpy decreased from 11.52 ± 0.50a to 10.47 ± 0.53c. Besides, the reaction efficiency increased from 40.87 ± 0.04d to 48.60 ± 0.02c and other qualities (solubility, swelling power and viscosity properties) of OSAS were significantly improved. While there were different changes in the structures, properties and qualities of modified starch after ultrasonic treatments for 8 min and 32–60 min. Consequently, these changes showed that ultrasonic treatment had a marked mechanochemical effect on starch granules. So the qualities of OSAS were improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Kavita, B.S. Yadav, R.B. Yadav, D. Nidhi, Physicochemical, pasting and rheological properties of Colocasia starch as influenced by the addition of guar gum and xanthan gum. J. Food Meas. Charact. 12, 2666–2676 (2018)

    Google Scholar 

  2. N. Willis-Fox, E. Rognin, T.A. Aljohani, R. Daly, Polymer mechanochemistry: manufacturing is now a force to be reckoned with. Chem 4(11), 2499–2537 (2018)

    CAS  Google Scholar 

  3. S. Saranu, S. Selve, U. Kaiser, L. Han, U. Wiedwald, P. Ziemann, U. Herr, Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles. Beilstein J. Nanotechnol. 2, 268–275 (2011)

    PubMed  PubMed Central  CAS  Google Scholar 

  4. A.J. Hu, S.T. Jiao, J. Zheng, L. Li, Y.S. Fan, L. Chen, Z.H. Zhang, Ultrasonic frequency effect on corn starch and its cavitation. LWT Food Sci. Technol. 60(2), 941–947 (2015)

    CAS  Google Scholar 

  5. S.R. Falsafi, Y. Maghsoudlou, H. Rostamabadi, M.M. Rostamabadi, H. Hamedi, S.M.H. Hosseini, Preparation of physically modified oat starch with different sonication treatments. Food Hydrocoll. 89, 311–320 (2018)

    Google Scholar 

  6. S. Shabana, R. Prasansha, I. Kalinina, I. Potoroko, U. Bagale, S.H. Shirish, Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles. Ultrason. Sonochem. 51, 444–450 (2019)

    PubMed  CAS  Google Scholar 

  7. M. Sujka, Ultrasonic modification of starch—impact on granules porosity. Ultrason. Sonochem. 37, 424–429 (2017)

    PubMed  CAS  Google Scholar 

  8. T.T. Nguyen, Y. Asakura, S. Koda, K. Yasuda, Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency. Ultrason. Sonochem. 39, 301–306 (2017)

    Google Scholar 

  9. Y. Yamakoshi, T. Miwa, Effect of ultrasonic wave irradiation sequence in microhollow production produced by bubble cavitation. Jpn. J. Appl. Phys. 50(7S), 07HF01 (2011)

    Google Scholar 

  10. H.T. Tang, H.B. Tang, Y.P. Li, Synthesis, optimization, characterization and property of oxidized hydroxypropyl mung bean starch. J. Food Process. Preserv. 41(1), e12763 (2016)

    Google Scholar 

  11. J. Guo, W. Tang, S. Lu, Z. Fang, K. Tu, M. Zheng, Solubility improvement of hesperetin by using different octenyl succinic anhydride modified starches. LWT Food Sci. Technol. 95, 255–261 (2018)

    CAS  Google Scholar 

  12. L. Altuna, M.L. Herreraand, M.L. Foresti, Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocoll. 80, 97–110 (2018)

    CAS  Google Scholar 

  13. H.M. Chen, Q. Huang, X. Fu, F.X. Luo, Ultrasonic effect on the octenyl succinate starch synthesis and substitution patterns in starch granules. Food Hydrocoll. 35, 636–643 (2014)

    CAS  Google Scholar 

  14. G. Velraj, S. Tamilarasu, R. Ramya, FTIR, XRD and SEM–EDS studies of archaeological pottery samples from recently excavated site in Tamil Nadu, India. Mater. Today 2(3), 934–942 (2015)

    Google Scholar 

  15. L.P. Yang, Y.S. Xia, Y.C. Tao, H.H. Geng, Y.Y. Ding, Y.B. Zhou, Multi-scale structural changes in lintnerized starches from three coloured potatoes. Carbohydr. Polym. 188, 228–235 (2018)

    PubMed  CAS  Google Scholar 

  16. B. Hazra, A.K. Varma, A.K. Bandopadhyay, S. Chakravarty, J. Buragohain, S.K. Samad, A.K. Prasada, FTIR, XRF, XRD and SEM characteristics of Permian shales, India. J. Nat. Gas Sci. Eng. 32(3), 239–255 (2016)

    CAS  Google Scholar 

  17. C.Y. Wong, F. Lam, Study of selected thermal characteristics of polypropylene/polyethylene binary blends using DSC and TGA. Polym. Test. 21(6), 691–696 (2002)

    CAS  Google Scholar 

  18. J. Mitchell, T.C. Chandrasekera, Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media. J. Chem. Phys. 141(22), 165 (2014)

    Google Scholar 

  19. Q. Lin, R. Liang, F. Zhong, A. Ye, H. Singh, Effect of degree of octenyl succinic anhydride (OSA) substitution on the digestion of emulsions and the bioaccessibility of β-carotene in OSA-modified-starch-stabilized-emulsions. Food Hydrocoll. 84, 303–312 (2018)

    CAS  Google Scholar 

  20. Y.H. Yun, E.S. Kim, W.G. Shim, S.D. Yoon, Physical properties of mungbean starch/PVA bionanocomposites added nano-ZnS particles and its photocatalytic activity. J. Ind. Eng. Chem. 68, 57–68 (2018)

    CAS  Google Scholar 

  21. H.T. Chan, R. Bhat, A.A. Karim, Effects of sodium dodecyl sulphate and sonication treatment on physicochemical properties of starch. Food Chem. 120(3), 703–709 (2010)

    CAS  Google Scholar 

  22. H.J. Yoo, H.R. Kim, S.J. Choi, C.S. Park, T.W. Moon, Characterisation of low-digestible starch fractions isolated from amylosucrase-modified waxy corn starch. Int. J. Food Sci. Technol. 53(3), 557–563 (2018)

    CAS  Google Scholar 

  23. J. Zheng, Q. Li, A. Hu, L. Yang, J. Lu, X. Zhang, Q. Lin, Dual-frequency ultrasound effect on structure and properties of sweet potato starch. Starch 65(7–8), 621–627 (2013)

    CAS  Google Scholar 

  24. A.R. Jambrak, Z. Herceg, D. Šubarić, J. Babić, M. Brnčić, S.R. Brnčić, T. Bosiljkova, D. Čveka, B. Tripaloa, J. Gelo, Ultrasound effect on physical properties of corn starch. Carbohydr. Polym. 79(1), 91–100 (2010)

    CAS  Google Scholar 

  25. I. Dankar, A. Haddarah, F. Omar, M. Pujolà, F. Sepulcre, Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chem. 260, 7–12 (2018)

    PubMed  CAS  Google Scholar 

  26. V.K. Shivaraju, S. Vallayil Appukuttan, The influence of bound water on the FTIR characteristics of starch and starch nanocrystals obtained from selected natural sources. Starch 71, 5–6 (2018)

    Google Scholar 

  27. N. Russ, B.I. Zielbauer, M. Ghebremedhin, T.A. Vilgis, Pre-gelatinized tapioca starch and its mixtures with xanthan gum and ι-carrageenan. Food Hydrocoll. 56, 180–188 (2016)

    CAS  Google Scholar 

  28. Y. Monroy, S. Rivero, M.A. García, Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason. Sonochem. 42, 795–804 (2018)

    PubMed  CAS  Google Scholar 

  29. L. Wang, P. Wang, A.S. Saleh, Q. Yang, Y. Ge, N. Wang, S. Yang, Z. Xiao, Influence of fluidized bed jet milling on structural and functional properties of normal maize starch. Starch 70(11–12), 1700290 (2018)

    Google Scholar 

  30. H. Atrous, N. Benbettaieb, F. Hosni, S. Danthine, C. Blecker, H. Attia, D. Ghorbel, Effect of γ-radiation on free radicals formation, structural changes and functional properties of wheat starch. Int. J. Biol. Macromol. 80, 64–76 (2015)

    PubMed  CAS  Google Scholar 

  31. J. Szymońska, M. Molenda, J. Wieczorek, Study of quantitative interactions of potato and corn starch granules with ions in diluted solutions of heavy metal salts. Carbohydr. Polym. 134, 102–109 (2015)

    PubMed  Google Scholar 

  32. Y. Xie, B. Zhang, M.N. Li, H.Q. Chen, Effects of cross-linking with sodium trimetaphosphate on structural and adsorptive properties of porous wheat starches. Food Chem. 289, 187–194 (2019)

    PubMed  CAS  Google Scholar 

  33. B. Ozel, D. Dag, M. Kilercioglu, S.G. Sumnu, M.H. Oztop, NMR relaxometry as a tool to understand the effect of microwave heating on starch–water interactions and gelatinization behavior. LWT Food Sci. Technol. 83, 10–17 (2017)

    CAS  Google Scholar 

  34. K. Srikaeo, M.S. Rahman, Proton relaxation of waxy and non-waxy rice by low field nuclear magnetic resonance (LF-NMR) to their glassy and rubbery states. J. Cereal Sci. 82, 94–98 (2018)

    CAS  Google Scholar 

  35. N.S. Sodhi, N. Singh, Morphological, thermal and rheological properties of starches separated from rice cultivars grown in India. Food Chem. 80(1), 99–108 (2003)

    Google Scholar 

  36. D. LeCorre, J. Bras, A. Dufresne, Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydr. Polym. 87(1), 658–666 (2012)

    CAS  Google Scholar 

  37. B. Saberi, S. Chockchaisawasdee, J.B. Golding, C.J. Scarlett, C.E. Stathopoulos, Physical and mechanical properties of a new edible film made of pea starch and guar gum as affected by glycols, sugars and polyols. Int. J. Biol. Macromol. 104, 345–359 (2017)

    PubMed  CAS  Google Scholar 

  38. Y. Liu, L. Fan, X. Mo, F. Yang, J. Pang, Effects of nanosilica on retrogradation properties and structures of thermoplastic cassava starch. J. Appl. Polym. Sci. 135, 45687 (2017)

    Google Scholar 

  39. S. Boufi, S.B. Haaj, A. Magnin, F. Pignon, M. Impéror-Clerc, G. Mortha, Ultrasonic assisted production of starch nanoparticles: structural characterization and mechanism of disintegration. Ultrason. Sonochem. 41, 327–336 (2018)

    PubMed  CAS  Google Scholar 

  40. C.O. Bernardo, J.L.R. Ascheri, D.W.H. Chávez, C.W.P. Carvalho, Ultrasound assisted extraction of yam (Dioscorea bulbífera) starch: effect on morphology and functional properties. Starch 70, 5–6 (2018)

    Google Scholar 

  41. H. Shahram, S.T. Dinani, M. Amouheydari, Effects of pectinase concentration, ultrasonic time, and pH of an ultrasonic-assisted enzymatic process on extraction of phenolic compounds from orange processing waste. J. Food Meas. Charact. 13, 487–498 (2018)

    Google Scholar 

  42. K.C. Huber, J.N. BeMiller, Channels of maize and sorghum starch granules. Carbohydr. Polym. 41, 269–276 (2000)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the National Natural Science Foundation of China (Grant Number 31471619) and the Funds of Shandong “Double Tops” Program of China (Grant Number SYL2017XTTD01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangyong Dai or Kexue Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dai, Y., Yu, K. et al. Mechanochemical effects of ultrasound on mung bean starch and its octenyl succinic anhydride modified starch. Food Measure 14, 1261–1272 (2020). https://doi.org/10.1007/s11694-020-00374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00374-8

Keywords

Navigation