Skip to main content
Log in

Differences in the Phenotypic Mean and Variance Between Two Geographically Separated Populations of Wood Frog (Lithobates sylvaticus)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Intraspecific phenotypic variation between populations separated by large geographic distances is common. Differences in the mean and variance of traits among populations can be used to infer the relative strength, direction, and type of selection on traits. Patterns in the mean provide information on the type of selection, and patterns in variance provide information on the strength of selection. However, interpretation of mean/variance patterns is difficult when two traits are linked and strongly correlated to fitness because it is unlikely that each trait will reach phenotypic optima. In amphibians time to metamorphosis and size at metamorphosis are positively related both phenotypically and genetically. Using a common-garden experiment we investigated whether selection favours shorter time to metamorphosis or increased mass at metamorphosis between two populations which differ in the length of the post-metamorphic growing season by 2–4 weeks. Animals from the population a shorter growing season took longer to reach and metamorphosed at a greater mass, while animals from the population with a longer period for post metamorphic growth reached metamorphosis faster, but at a smaller mass. Greater phenotypic variance was observed in both traits in the population with the shorter growing season. These data suggest that animals from the population with a restricted growth period maximise mass at metamorphosis at the expense of longer larval periods while animals from population with the longer post-metamorphic growth period sacrifice mass at metamorphosis to shorten the larval period and maximise larval survival. Differences in phenotypic variance among populations suggest either directional or diversifying selection has acted on both traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvaraz, D., & Nicieza, A. G. (2002). Effects of temperature and food quality on anuran larval growth and metamorphosis. Functional Ecology, 16, 640–648.

    Article  Google Scholar 

  • Arendt, J. D. (1997). Adaptive intrinsic growth rates: An intergration across taxa. The Quarterly Review of Biology, 72, 149–177.

    Article  Google Scholar 

  • Arendt, J. D., & Wilson, D. S. (1999). Countergradient selection for rapid froth in pumpkinseed sunfish: Disentangling ecological and evolutionary effects. Ecology, 80, 2793–2798.

    Article  Google Scholar 

  • Bernardo, J. (1996a). The particular maternal effect of propagule size, especially egg size: Patterns, models, quality of evidence and interpretations. American Zoologist, 36, 216–236.

    Google Scholar 

  • Bernardo, J. (1996b). Maternal effects in animal ecology. American Zoologist, 36, 83–105.

    Google Scholar 

  • Berven, K. A. (1982a). The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traits. Evolution, 50, 2338–2345.

    Google Scholar 

  • Berven, K. A. (1982b). The genetic basis of altitudinal variation in the wood frog Rana sylvatica. II. An experimental analysis of larval development. Oecologia, 52, 360–369.

    Article  Google Scholar 

  • Berven, K. A. (1987). The heritable basis of variation in larval developmental patterns within populations of the wood frog (Rana sylvatica). Evolution, 41, 1088–1097.

    Article  Google Scholar 

  • Berven, K. A. (1990). Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology, 71, 1599–1608.

    Article  Google Scholar 

  • Berven, K. A., Gill, D. E., & Smith-Gill, S. J. (1979). Countergradient selection in the green frog, Rana clamitans. Evolution, 33, 609–623.

    Article  Google Scholar 

  • Blackenhorn, W. U. (1998). Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution, 52, 1394–1407.

    Article  Google Scholar 

  • Blondel, J., Thomas, D. W., Charmantier, A., Perret, P., Bourgault, P., & Lambrechts, M. M. (2006). A thirty-year study of phenotypic and genetic variation of blue tits in Mediterranean habitat mosaics. BioScience, 56, 661–673.

    Article  Google Scholar 

  • Blouin, M. S. (1992a). Genetic correlations among morphometric traits and rates of growth and differentiation in the green tree frog, Hyla cinerea. Evolution, 46, 735–744.

    Article  Google Scholar 

  • Blouin, M. S. (1992b). Genetic correlations among morphometric traits and rates of growth and differentiation in the green tree frog, Hyla cinerea. Evolution, 46, 735–744.

    Article  Google Scholar 

  • Carroll, S. P., Dingle, H., Famula, T. R., & Fox, C. W. (2001). Genetic architecture of adaptive differentiation in evolving host races of the soapbury bug, Jadera haematoloma. Genetica, 112, 257–272.

    Article  PubMed  Google Scholar 

  • Chelgren, N. D., Rosenberg, D. K., Heppell, S. S., & Gitelman, A. I. (2006). Carryover aquatic effects on survival of metamorphic frogs during emigration. Ecological Applications, 16, 250–261.

    Article  PubMed  Google Scholar 

  • Clegg, S. M., Frentiu, F. D., Kikkawa, J., Tavecchia, G., & Owens, I. P. F. (2008). 4000 years of phenotypic change in an island bird: Heterogeneity of selection over three microevolutionary timescales. Evolution, 62, 2393–2410.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Conant, R., & Collins, J. T. (1991). A field guide to reptiles and amphibians: Eastern and Central North America. Boston, MA: Houghton Mifflin Company.

    Google Scholar 

  • Conover, D. O., & Schultz, E. T. (1995). Phenotypic similarity and the evolutionary significance of countergradient variation. Trends in Ecology & Evolution, 10, 248–252.

    Article  CAS  Google Scholar 

  • Crosby, M. K. A., Licht, L. E., & Fu, J. (2009). The effect of habitat gragmentation on finescale population structure of wood frogs (Rana sylvatica). Conservation Genetics, 10, 1707–1718.

    Article  Google Scholar 

  • DeMeester, L. (1996). Local genetic differentiation and adaptation in freshwater zooplankton populations: Patterns and processes. Ecoscience, 3, 385–399.

    Google Scholar 

  • Denver, R. J., Mirhadi, N., & Phillips, M. (1998). Adaptive plasticity in amphibian metamorphosis: Responses of Scaphiopus hammondii tadpoles to habitat desiccation. Ecology, 79, 1859–1872.

    Google Scholar 

  • Egan, R. S., & Paton, P. W. C. (2004). Within-pond parameters affecting oviposition by wood frogs and spotted salamanders. Wetlands, 24, 1–13.

    Article  Google Scholar 

  • Freeman, S., & Herron, J. C. (2007). Evolutionary analysis. San Francisco, CA: Benjamin Cummings.

    Google Scholar 

  • Freidenburg, L. K., & Skelly, D. K. (2004). Microgeographical variation in thermal preference by an amphibian. Ecology Letters, 7, 369–373.

    Article  Google Scholar 

  • Goater, C. P. (1994). Growth and survival of postmetamorphic toads: Interactions among larval history, density, and parasitism. Ecology, 75, 2264–2274.

    Article  Google Scholar 

  • Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183–190.

    Google Scholar 

  • Gotthard, K., & Nylin, S. (1995). Adpative plasticity and plasticity as an adaptation—a selective review of plasticity in animal morphology and life-history. Oikos, 72, 3–17.

    Article  Google Scholar 

  • Grant, P. R., & Grant, R. J. (1995). Predicting microevolutionary responses to directional selection on heritable variation. Evolution, 49, 241–251.

    Article  Google Scholar 

  • Karraker, N. E., & Gibbs, J. P. (2009). Amphibian production in forested landscapes in relation to wetland hydroperiod: A case study of vernal pools and beaver ponds. Biological Conservation, 142, 2293–2302.

    Article  Google Scholar 

  • Kiesecker, J. M., & Skelly, D. K. (2001). Effects of disease and pond drying on gray treefrog growth, development, and survival. Ecology, 82, 1956–1963.

    Article  Google Scholar 

  • Knopp, T., Cano, J. M., Crochet, P., & Merila, J. (2007). Contrasting levels of variation in neutral and quantative genetic loci on island populations of moor frogs (Rana arvalis). Conservation Genetics, 8, 45–56.

    Article  Google Scholar 

  • Lankford, T. E., Billerbeck, J. M., & Conover, D. O. (2001). Evolution of intrinsic growth and energy acquisition rates. II. Trade-offs with vulnerability to predation in Menidia menidia. Evolution, 55, 1873–1881.

    PubMed  Google Scholar 

  • Laugen, A. T., Laurila, A., & Merila, J. (2002). Maternal and genetic contributions to geographical variation in Rana temporaria larval life-history traits. Biological Journal of the Linnean Society, 76, 61–70.

    Article  Google Scholar 

  • Laugen, A. T., Laurila, A., Rasanen, K., & Merila, J. (2003). Latitudinal countergradient variation in the common frog (Rana temporaria) development rates—evidence for local adaptation. Journal of Evolutionary Biology, 16, 996–1005.

    Article  PubMed  CAS  Google Scholar 

  • Laurila, A., Karttunen, S., & Merila, J. (2002). Adaptive phenotypic plasticity and genetics of larval life histories in two Rana temporaria populations. Evolution, 56, 617–627.

    PubMed  Google Scholar 

  • Lee-Yaw, J. A., Irwin, J., & Green, D. M. (2008). Postglacial range expansion from northern refugia by the wood frog, Rana sylvatica. Molecular Ecology, 17, 867–884.

    Article  PubMed  CAS  Google Scholar 

  • Ligon, L. N., & Skelly, D. (2009). Cryptic divergence: counter gradient variation in the wood frog. Evolutionary Ecology Research, 11, 1099–1109.

    Google Scholar 

  • Lind, M. I., & Johansson, F. (2007). The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations. Journal of Evolutionary Biology, 20, 1288–1297.

    Article  PubMed  CAS  Google Scholar 

  • Lind, M. I., & Johansson, F. (2009). Costs and limits of phenotypic plasticity in island populations of the common frog Rana temporaria under divergent selection pressures. Evolution, 63, 1508–1518.

    Article  PubMed  Google Scholar 

  • Loman, J. (1999). Early metamorphosis in common frog Rana temporaria tadpoles at risk of drying: And experimental demonstration. Amphibia-Reptilia, 20, 421–430.

    Google Scholar 

  • Loman, J. (2002). Temperature, genetic and hydroperiod effects on metamorphosis of brown frogs Rana arvalis and R. temporaria in the field. Journal of Zoology, 258, 115–129.

    Article  Google Scholar 

  • Ludwig, D., & Rowe, L. (1990). Life-history strategies for energy gain and predator avoidance under time constraints. American Naturalist, 135, 686–707.

    Article  Google Scholar 

  • Merila, J., & Crnokrak, P. (2001). Comparison of marker gene and quantitative genetic differentiation among populations: A review. Journal of Evolutionary Biology, 14, 892–903.

    Article  Google Scholar 

  • Merila, J., Laurila, A., Laugen, A. T., Rasanen, K., & Pahkala, M. (2000). Plasticity in age and size at metamorphosis in Rana temporaria: Comparison of high and low latitude populations. Ecography, 23, 457–465.

    Article  Google Scholar 

  • Merila, J., Laurila, A., & Lindgreen, B. (2004). Variaion in the degree and costs of adaptive phenotypic plasticity among Rana temporaria populations. Journal of Evolutionary Biology, 17, 1132–1140.

    Article  PubMed  CAS  Google Scholar 

  • Morey, S., & Reznick, D. (2001). Effects of larval density on postmetamorphic Spadefoot toads (Spea hammondii). Ecology, 82, 510–522.

    Google Scholar 

  • Newman, R. A., & Dunham, A. E. (1994). Size at metamorphosis and water loss in a desert anuran (Scaphiopus couchii). Copeia, 1994, 372–381.

    Article  Google Scholar 

  • Newman, R. A., & Squire, T. (2001). Mictosatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Molecular Ecology, 10, 1087–1100.

    Article  PubMed  CAS  Google Scholar 

  • Orizaola, G., & Laurila, A. (2009). Microgeographic variation in temperature-induced plasticity in an isolated amphibian metapopulation. Evolutionary Ecology, 23, 979–991.

    Article  Google Scholar 

  • Palo, J. U., O’Hara, R. B., Laugen, A. T., Laurila, A., Primmer, C. R., & Merila, J. (2003). Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: Evidence from a comparison of molecular and quantitative genetic data. Molecular Ecology, 12, 1963–1978.

    Article  PubMed  CAS  Google Scholar 

  • Peacor, S. D., & Pfister, C. A. (2006). Experimental and model analysis of the effects of competition on individual size variation in wood frog (Rana sylvatica) tadpoles. Journal of Animal Ecology, 75, 990–999.

    Article  PubMed  Google Scholar 

  • Pigliucci, M. (2003). Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecology Letters, 6, 265–272.

    Article  Google Scholar 

  • Reznick, D. N., & Ghalambor, C. K. (2001). The population ecology of contemporary adaptations: What empirical studies reveal about the conditions that promote adaptive evolution. Genetica, 112, 183–198.

    Article  PubMed  Google Scholar 

  • Reznick, D., Nunney, L., & Tesier, A. (2000). Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology & Evolution, 15, 421–425.

    Article  Google Scholar 

  • Richter-Boix, A., Llorente, G. A., & Montori, A. (2004). Responses to competition effects of two anuran tadpoles according to life-history traits. Oikos, 106, 39–50.

    Article  Google Scholar 

  • Richter-Boix, A., Teplitsky, C., Rogell, B., & Laurila, A. (2010). Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow. Molecular Ecology, 19, 716–731.

    Article  PubMed  Google Scholar 

  • Schiesari, L. (2006). Pond canopy cover: A resource gradient for anuran larvae. Freshwater Biology, 51, 412–423.

    Article  CAS  Google Scholar 

  • Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Semlitsch, R. D. (1993). Adaptive genetic variation in growth and development of tadpoles of the hybridogenetic Rana esculenta complex. Evolution, 47, 1805–1818.

    Article  Google Scholar 

  • Semlitsch, R. D., & Gibbons, J. W. (1990). Effects of egg size on success of larval salamanders on complex aquatic environments. Ecology, 71, 1789–1795.

    Article  Google Scholar 

  • Semlitsch, R. D., Scott, D. E., & Pechmann, J. H. (1988). Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology, 69, 184–192.

    Article  Google Scholar 

  • Siepielski, A. M., DiBattista, J. D., & Carlson, S. M. (2009). It’s about time: The temporal dynamics of phenotypic selection in the wild. Ecology Letters, 12, 1261–1276.

    Article  PubMed  Google Scholar 

  • Skelly, D. K., Freindenburg, L. K., & Kiesecker, J. M. (2002). Forest canopy and the performance of larval amphibians. Ecology, 83, 983–992.

    Article  Google Scholar 

  • Smith, D. C. (1987). Adult recruitment in chorus frogs: Effects of size and date at metamorphosis. Ecology, 68, 344–350.

    Article  Google Scholar 

  • Stearns, S. C. (1983). The genetic basis of differences in life-history traits among six populations of mosquitofish (Gambusia affinis) that shared ancestors in 1905. Evolution, 37, 618–627.

    Article  Google Scholar 

  • Stearns, S. C. (1992). Evolution of life histories. New York, NY: Oxford University Press.

    Google Scholar 

  • Stebbins, R. C. (1985). A field guide to western reptiles and amphibians. Boston, MA: Houghton Mifflin Company.

    Google Scholar 

  • Taylor, E. B. (1991). A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture, 98, 185–207.

    Article  Google Scholar 

  • Werner, E. E. (1985). Amphibian metamorphosis: Growth rate, predation risk, and the optimal size at transformation. American Naturalist, 128, 319–341.

    Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. New York, NY: Oxford University Press.

    Google Scholar 

  • Wilbur, H. M., & Collins, J. P. (1973). Ecological aspects of amphibian metamorphosis. Science, 182, 1305–1314.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ashley Carpenter, Matt Costello and Brodie Reinhart for their assistance with portions of the field and laboratory work. The project would not have been possible without access to CFB Gagetown provided by the Department of Defence. Funding was provided by a NSERC-SGP, the Canadian Department of Defence (CFB Gagetown), the University of New Brunswick and the Canadian Forest Service (Natural Resources Canada). Animals handling procedures were approved by the University of New Brunswick Animals Care Committee, protocol number 11-2C-06A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Edge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edge, C.B., Thompson, D.G. & Houlahan, J.E. Differences in the Phenotypic Mean and Variance Between Two Geographically Separated Populations of Wood Frog (Lithobates sylvaticus). Evol Biol 40, 276–287 (2013). https://doi.org/10.1007/s11692-012-9208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9208-1

Keywords

Navigation