Skip to main content
Log in

Mg-Ni-Ga System: Phase Diagram, Structural and Hydrogenation Properties of MgNi1.25Ga0.75, MgNiGa, and Mg2NiGa3

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The isothermal section at 473 K of the Mg-Ni-Ga system in the entire composition regime and structural characterizations of the observed ternary phases are reported. The MgNi1+xGa1-x (x = 0.25), MgNiGa, Mg2NiGa3, Mg9-xNi6Ga14-y (x = 0.32, y = 0.84), Mg3Ni2Ga, and MgNi2Ga5 structures were solved and refined from X-ray single crystal diffraction data. MgNi1+xGa1-x (x = 0.25, Fd-3 m, a = 7.0781(2) Å) and MgNiGa (P63/mmc, a = 5.0781(3) Å, c = 8.194(1) Å) crystallize in the Laves phase MgCu2 and MgZn2 structure types, respectively. Mg2NiGa3 (Cmcm, a = 5.415(1) Å, b = 8.651(1) Å, c = 8.562(2) Å, Mg2MnGa3-type) represents the orthorhombic derivative of Laves phases. Mg9-xNi6Ga14-y (x = 0.32, y = 0.84, Fd-3 m, a = 19.8621(6) Å) is isostructural with Mg35Cu24Ga53. MgNi2Ga5 (Pnnm, a = 6.2704(1) Å b = 6.6902(1) Å c = 6.0794(1) Å) crystallizes in the MgCo2Ga5-type structure which is derived from tetragonal CoGa3-type. The crystal chemistry of these structures is compared and discussed. The hydrogenation properties of the MgNi1+xGa1-x (x = 0.25), MgNiGa, and Mg2NiGa3 Laves phases were studied. MgNi1.25Ga0.75 absorbs up to 2.20 wt.% H2, MgNiGa absorbs up to 1.78 wt.% H2, and Mg2NiGa3 absorbs up to 1.66 wt.% H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, Hydrogen Storage in Magnesium-Based Hydrides and Hydride Composites, Scr. Mater., 2007, 56, p 841–846.

    Article  Google Scholar 

  2. A. Reiser, B. Bogdanovic, and K. Schlichte, The Application of Mg-Based Metal-Hydrides as Heat Energy Storage Systems, Int. J. Hydrog. Energy, 2000, 25, p 425–430.

    Article  Google Scholar 

  3. G.S. Walker (2008) Multicomponent hydrogen storage systems, Solid-state Hydrogen Storage, p 478–499.

  4. J.-C. Crivello, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, J. Huot, T.R. Jensen, P. de Jongh, M. Latroche, G.S. Walker, C.J. Webb, and V.A. Yartys, Mg-Based Compounds for Hydrogen and Energy Storage, Appl. Phys. A, 2016, 122, p 85.

    Article  ADS  Google Scholar 

  5. V. Pavlyuk, P. Solokha, O. Zelinska, V. Paul-Boncour, and A. Nowik-Zając, Ce20Mg19Zn81– a New Structure Type with a Giant Cubic Cell, Acta Cryst. C, 2008, 64, p 50–52.

    Article  Google Scholar 

  6. P. Solokha, S. De Negri, V. Pavlyuk, and A. Saccone, Inhomogeneous 2D Linear Intergrowth Structures Among Novel Y-Cu–Mg Ternary Compounds With Yttrium/Copper Equiatomic Ratio, Solid State Sci., 2009, 11, p 801–811.

    Article  ADS  Google Scholar 

  7. S. De Negri, P. Solokha, A. Saccone, and V. Pavlyuk, The YCuMg system in the 0667 at% Cu concentration range: The isothermal section at 400°C, Intermetallics, 2009, 17, p 614–621.

    Google Scholar 

  8. P. Solokha, S. De Negri, V. Pavlyuk, B. Eck, R. Dronskowski, and A. Saccone, 3D [Ag–Mg] Polyanionic Frameworks in the La4Ag10Mg3 and La4Ag10.3Mg12 New Ternary Compounds, Journal of Solid State Chemistry, 2010, 183(12), p 2995–3001. https://doi.org/10.1016/j.jssc.2010.10.018

    Article  ADS  Google Scholar 

  9. G. Kowalczyk, V. Kordan, A. Stetskiv, and V. Pavlyuk, Lithiation and magnesiation of R5Sn3 (R = Y and Gd) alloys, Intermetallics, 2016, 70, p 53–60.

    Article  Google Scholar 

  10. M.Y. Teslyuk, and V.Y. Markiv, New Ternary Laves Phases in Systems Containing Zn, Ga, In, and Ge, Sov. Phys. Crystallogr., 1962, 7, p 103–104.

    Google Scholar 

  11. N. Pavlyuk, G. Dmytriv, V. Pavlyuk, B. Rozdzynska-Kielbik, G. Cichowicz, M.K. Cyranski, I. Chumak, and H. Ehrenberg, New cubic cluster phases in the Mg–Ni–Ga system, Acta Cryst. B, 2020, 76, p 534–542.

    Article  Google Scholar 

  12. N. Pavlyuk, G. Dmytriv, V. Pavlyuk, B. Rożdżyńska-Kiełbik, A. Gil, I. Chumak, H (2020) Ehrenberg, New ternary MgCo2Ga5 and MgNi2Ga5 gallides. Zeitschrift für Kristallographie-Crystalline Materials., 8,17.

  13. G. Voss, Die Legierungen: Nickel-Zinn, Nickel-Blei, Nickel-Thallium, Nickel-Wismut, Nickel-Chrom, Nickel-Magnesium, Nickel-Zink und Nickel-Cadmium, Zeitschrift für Anorganische, Chemie., 1908, 57, p 34–71.

    Google Scholar 

  14. A.A. Nayeb-Hashemi, and J.B. Clark, Mg-Ni (Magnesium-Nickel) Binary Alloy Phase Diagrams, Second Edition, 1990, 3, p 2529–2530.

    Google Scholar 

  15. B. Predel, and D.W. Stein, Thermodynamische Untersuchung Des Systems Gallium-Magnesium, J.Less-Common Metals, 1969, 18, p 203–213.

    Article  Google Scholar 

  16. A.A. Nayeb-Hashemi, and J.B. Clark, Ga-Mg (Gallium-Magnesium) Binary Alloy Phase Diagrams, Second Edition, 1990, 3, p 1822–1823.

    Google Scholar 

  17. S.Y. Lee, and P. Nash, Ga-Ni (Gallium-Nickel) Binary Alloy Phase Diagrams, Second Edition, 1990, 3, p 1829–1833.

    Google Scholar 

  18. P. Feschotte, and P. Eggimann, Les systemes binaires cobalt-gallium et nickel-gallium - étude comparée, Journal of the Less-Common Metals, 1979, 63, p 15–30.

    Article  Google Scholar 

  19. J. Rodriguez-Carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, Physica B., 1993, 192, p 55–69.

    Article  ADS  Google Scholar 

  20. Oxford Diffraction, CrysAlis CCD and CrysAlis RED, Oxford Diffraction Ltd., 2008.

  21. APEX2, SAINT, XPREP and SADABS, Bruker AXS Inc., 2005.

  22. G.M. Sheldrick, SHELXL-97. University of Göttingen, Program for crystal structure refinement, 1997.

    Google Scholar 

  23. O.K. Andersen, Linear methods in band theory, Phys Rev B., 1975, 12, p 30–60.

    Article  ADS  Google Scholar 

  24. H. L. Skriver, The LMTO Method. Springer Berlin Heidelberg, Berlin, Heidelberg, 1984.

    Book  Google Scholar 

  25. P. Phariseau, W.M. Temmerman, Eds., The Electronic Structure of Complex Systems Springer US, Boston, MA, 1984

    Google Scholar 

  26. O.K. Andersen, and O. Jepsen, Explicit, first-principles tight-binding theory, Phys Rev Lett., 1984, 53, p 2571–2574.

    Article  ADS  Google Scholar 

  27. J. Korringa, On the calculation of the energy of a Bloch wave in a metal, Physica., 1947, 13, p 392–399.

    Article  ADS  MathSciNet  Google Scholar 

  28. W. Kohn, and N. Rostoker, Solution of the Schrödinger Equation in Periodic Lattices with an Application to Metallic Lithium, Phys Rev., 1954, 94, p 1111–1120.

    Article  ADS  Google Scholar 

  29. G. Krier, O. Jepsen, A. Burkhardt, O.K. Andersen, The TB-LMTO-ASA program, version 4.7, Max-Planck-Institut für Festkörperforschung, Stuttgart, 1995.

  30. U. von Barth, and L. Hedin, A local exchange-correlation potential for the spin polarized case, J. Phys. C Solid State., 1972, 5, p 1629–1642.

    Article  ADS  Google Scholar 

  31. P.E. Blöchl, O. Jepsen, and O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B., 1994, 54, p 16223–16233.

    Article  ADS  Google Scholar 

  32. R. Dronskowski, and P.E. Blöchl, Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations, J. Phys. Chem., 1993, 97, p 8617–8624.

    Article  Google Scholar 

  33. A.D. Becke, and K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys., 1990, 92, p 5397–5403.

    Article  ADS  Google Scholar 

  34. B. Silvi, and A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions, Nature, 1994, 371, p 683–686.

    Article  ADS  Google Scholar 

  35. B. Eck, wxDragon 1.6.6, Aachen, 1994–2010. Available from: http://www.ssc. rwth-aachen.de.

  36. I. Chumak, V. Pavlyuk, V. Hlukhyy, and R. Pöttgen, Mg2MnGa3 – an orthorombic derivative of the hexagonal Laves-phase MgZn2, IX Inter. Conference on Crystal Chem. Intermetallic Compound., 2005, 20–24, p 51.

    Google Scholar 

  37. H. Bärnighausen, Group-subgroup relations between space groups: a useful Tool in Crystal Chemistry, Commun. Math. Comput. Chem., 1980, 9, p 139–175.

    MathSciNet  Google Scholar 

  38. G. Cordier, and V. Müller, Crystal structure of Potassium Indium (17/41), K17In41, Z. Kristallogr., 1993, 205, p 353–354.

    Article  Google Scholar 

  39. A. Chahine, M. Tillard-Charbonnel, and C. Belin, Crystal Structure of lithium copper gallium indium (18/5/31/4), Li18Cu5Ga31In4, Z. Kristallogr., 1995, 210, p 80.

    Article  Google Scholar 

  40. P. Viklund, S. Lidin, P. Berastegui, and U. Häussermann, Variations of the FeGa3 structure type in the systems CoIn3−xZnx and CoGa3−xZnx, J. Solid State Chem., 2002, 165, p 100–110.

    Article  ADS  Google Scholar 

  41. R. Pöttgen, R.-D. Hoffmann, and G. Kotzyba, Structure, chemical bonding, and properties of CoIn3, RhIn3, and IrIn3, Z. Anorg. Allg. Chem., 1998, 624, p 244.

    Article  Google Scholar 

  42. E.I. Gladyshevskii, Yu.B. Kuz’ma, and P.I. Kripyakevich, The crystal structures of Mn3Ni2Si, V3Ni2Si, Nb3Ni2Si and related Cr and Ta compounds, J. Struct. Chem., 1963, 4, p 343–349.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Science Centre, Poland (No 2017/25/B/ST8/02179) and German Academic Exchange Service (DAAD) is gratefully acknowledged (No 91774331, bilateral PhD scholarship grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazar Pavlyuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlyuk, N., Dmytriv, G., Pavlyuk, V. et al. Mg-Ni-Ga System: Phase Diagram, Structural and Hydrogenation Properties of MgNi1.25Ga0.75, MgNiGa, and Mg2NiGa3. J. Phase Equilib. Diffus. 43, 458–470 (2022). https://doi.org/10.1007/s11669-022-00985-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-00985-2

Keywords

Navigation