Skip to main content

Advertisement

Log in

Application of DOE and ANOVA in Optimization of HVOF Spraying Parameters in the Development of New Ti Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

High velocity oxygen fuel (HVOF) thermal spray technique has been used to develop new Ti coatings on 1045 steel and 316L stainless steel for different applications. Optimization of the HVOF parameters requires numerous experiments to perform that can be reduced using the Taguchi Design of Experiment (DOE) methodology. By using DOE, it has been possible to identify the effects of the HVOF spraying parameters (spraying distance, number of layers, gun speed, powder feed rate, type of substrate and type of combustion) on the main characteristics of the coatings (porosity, thickness, hardness and adhesion). According to Taguchi method, the resulting orthogonal matrix corresponded to a L16 (44 × 22) matrix. Using this matrix, the number of experiments was reduced from 1024 to 16 and a first approximation of the best conditions for a real application was obtained. To evaluate the significant spraying variables, a statistical analysis of variance (ANOVA) was used. It has been determined that there is a relationship between coating characteristics and HVOF parameters. Also, the influence of the parameters on the characteristics and properties of the coatings (from high to low) is as follows: spraying distance, number of layers, gun speed, powder feed rate, type of substrate and mixture of gases used in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Heim, F. Holler, and C. Mitterer, Hard Coatings Produced by PACVD Applied to Aluminium Die Casting, Surf. Coat. Technol., 1999, 116-119, p 530-536. https://doi.org/10.1016/S0257-8972(99)00104-8

    Article  CAS  Google Scholar 

  2. C. Mitterer, F. Holler, F. Üstel, and D. Heim, Application of Hard Coatings in Aluminium Die Casting—Soldering, Erosion and Thermal Fatigue Behaviour, Surf. Coat. Technol., 2000, 125, p 233-239. https://doi.org/10.1016/S0257-8972(99)00557-5

    Article  CAS  Google Scholar 

  3. K.S. Klimek, A. Gebauer-Teichmann, P. Kaestner, and K. Rie, Duplex-PACVD Coating of Surfaces for Die Casting Tools, Surf. Coat. Technol., 2007, 201, p 5628-5632. https://doi.org/10.1016/j.surfcoat.2006.07.163

    Article  CAS  Google Scholar 

  4. S.H. Lee, K.H. Nam, S.C. Hong, and J.J. Lee, Low Temperature Deposition of TiB2 by Inductively Coupled Plasma Assisted CVD, Surf. Coat. Technol., 2007, 201, p 5211-5215. https://doi.org/10.1016/j.surfcoat.2006.07.209

    Article  CAS  Google Scholar 

  5. R.K. Roy, Design Of Experiments Using Taguchi Approach: 16 Steps to Product and Process Improvement, Wiley, Hoboken, 2001, https://doi.org/10.1520/JTE12406JISBN 0-471-36101-1

    Book  Google Scholar 

  6. S.K. Madhavi, D. Sreeramulu, and M. Venkatesh, Evaluation of Optimum Turning Process of Process Parameters Using DOE and PCA Taguchi Method, Mater. Today Proc., 2017, 4, p 1937-1946. https://doi.org/10.1016/j.matpr.2017.02.039

    Article  Google Scholar 

  7. M. Oksa, E. Turunen, T. Suhonen, T. Varis, and S. Hannula, Optimization and Characterization of High Velocity Oxy-Fuel Sprayed Coatings: Techniques, Mater. Appl. Coat., 2011, 1, p 17-52. https://doi.org/10.3390/coatings1010017

    Article  Google Scholar 

  8. S. Fayyazi, M. Kasraei, and M.E. Bahrololoom, Improving Impact Resistance of High-Velocity Oxygen Fuel-Sprayed WC–17Co Coating Using Taguchi Experimental Design, J. Therm. Spray Technol., 2019, 28(4), p 706-716. https://doi.org/10.1007/s11666-019-00844-6

    Article  CAS  Google Scholar 

  9. S. Fayyazi, M.E. Bahrololoom, and M. Kasraei, Optimizing High-Velocity Oxygen Fuel-Sprayed WC–17Co Coating Using Taguchi Experimental Design to Improve Tribological Properties, Trans. Indian Inst. Met., 2018, 71(12), p 3045-3062. https://doi.org/10.1007/s12666-018-1406-9

    Article  CAS  Google Scholar 

  10. S. Thermsuk and P. Surin, Optimization Parameters of WC–12Co HVOF Sprayed Coatings on SUS 400 Stainless Steel, Procedia Manuf., 2019, 30, p 506-513. https://doi.org/10.1016/j.promfg.2019.02.071

    Article  Google Scholar 

  11. A.J. Becker and J.H. Blanks, TiB2-Coated Cathodes for Aluminum Smelting Cells, Thin Solid Films, 1984, 119, p 241-246. https://doi.org/10.1016/0040-6090(84)90009-9

    Article  CAS  Google Scholar 

  12. Y. Wang, Application of Ceramic Thermal Spray Coatings for Molten Metal Handling Tools and Moulds, Surf. Eng., 1999, 15, p 205-209. https://doi.org/10.1179/026708499101516524

    Article  CAS  Google Scholar 

  13. M. Yu, R. Shivpuri, and R.A. Rapp, Effects of Molten Aluminum on H13 Dies and Coatings, J. Mater. Eng. Perform., 1995, 4, p 175-181. https://doi.org/10.1007/BF02664111

    Article  CAS  Google Scholar 

  14. M.U. Pellizzari, A. Molinari, and G. Straffelini, Thermal Fatigue Resistance of Plasma Duplex-Treated Tool Steel, Surf. Coat. Technol., 2001, 142-144, p 1109-1115. https://doi.org/10.1016/S0257-8972(01)01223-3

    Article  Google Scholar 

  15. S.V. Shah and N.B. Dahotre, Laser Surface-Engineered Vanadium Carbide Coating for Extended Die Life, J. Mater. Process. Technol., 2002, 124, p 105-112. https://doi.org/10.1016/S0924-0136(02)00109-7

    Article  CAS  Google Scholar 

  16. A. Srivastava, V. Joshi, R. Shivpuri, R. Bhattacharya, and S. Dixit, A Multilayer Coating Architecture to Reduce Heat Checking of Die Surfaces, Surf. Coat. Technol., 2003, 164, p 631-636. https://doi.org/10.1016/S0257-8972(02)00690-4

    Article  Google Scholar 

  17. Y. Wang, A Study of PVD Coatings and Die Materials for Extended Die-Casting Die Life, Surf. Coat. Technol., 1997, https://doi.org/10.1016/S0257-8972(97)00476-3

    Article  Google Scholar 

  18. Y. Chu, K. Venkatesan, J.R. Conrad, K. Sridharan, M. Shamim, and R.P. Fetherston, An Evaluation of Metallic Coatings for Erosive Wear Resistance in Die Casting Applications, Wear, 1996, 192, p 49-55. https://doi.org/10.1016/0043-1648(95)06749-3

    Article  Google Scholar 

  19. M. Li et al., Porous Titanium Scaffold Surfaces Modified with Silver Loaded Gelatin Microspheres and Their Antibacterial Behavior, Surf. Coat. Technol., 2016, 286, p 140-147. https://doi.org/10.1016/j.surfcoat.2015.12.006

    Article  CAS  Google Scholar 

  20. B. Dabrowski, W. Swieszkowski, D. Godlinski, and K.J. Kurzydlowski, Highly Porous Titanium Scaffolds for Orthopaedic Applications, J. Biomed. Mater. Res. Part B Appl. Biomater., 2010, 51, p 53-61. https://doi.org/10.1002/jbm.b.31682

    Article  CAS  Google Scholar 

  21. Y. Kirmanidou, M. Sidira, M. Drosou, V. Bennani, A. Bakopoulou, A. Tsouknidas, N. Michailidis, and K. Michalakis, New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review, Biomed. Res. Int., 2016, 2, p 1-21

    Article  Google Scholar 

  22. K. Kim, S. Kuroda, M. Watanabe, R. Huang, H. Fukanuma, and H. Katanoda, Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings, J. Therm. Spray Technol., 2012, 21, p 550-560. https://doi.org/10.1007/s11666-011-9703-4

    Article  CAS  Google Scholar 

  23. K. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Effects of Temperature of In-Flight Particles on Bonding and Microstructure in Warm-Sprayed Titanium Deposits, J. Therm. Spray Technol., 2009, 18, p 392-400. https://doi.org/10.1007/s11666-009-9303-8

    Article  CAS  Google Scholar 

  24. M.N. Khan and T. Shamim, Investigation of a Dual-Stage High Velocity Oxygen Fuel Thermal Spray System, Appl. Energy, 2014, 130, p 853-862. https://doi.org/10.1016/j.apenergy.2014.03.075

    Article  CAS  Google Scholar 

  25. S.H. Zahiri, C.I. Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium via Cold Gas Dynamic Spraying, J. Mater. Process. Technol., 2008, 209, p 922-929. https://doi.org/10.1016/j.jmatprotec.2008.03.005

    Article  CAS  Google Scholar 

  26. L. Gil and M.H. Staia, Influence of HVOF Parameters on the Corrosion Resistance of NiWCrBSi Coatings, Thin Solid Films, 2002, 421, p 446-454. https://doi.org/10.1016/S0040-6090(02)00815-5

    Article  Google Scholar 

  27. M. Campo, M. Carboneras, M.D. López, B. Torres, P. Rodrigo, E. Otero, and J. Rams, Corrosion Resistance of Thermally Sprayed Al and Al/SiC Coatings on Mg, Surf. Coat. Technol., 2009, 203, p 3224-3230. https://doi.org/10.1016/j.surfcoat.2009.03.057

    Article  CAS  Google Scholar 

  28. D. Shi, M. Li, and P.D. Christofides, Diamond Jet Hybrid HVOF Thermal Spray: Rule-Based Modeling of Coating Microstructure, Ind. Eng. Chem. Res., 2004, https://doi.org/10.1021/ie030560h

    Article  Google Scholar 

  29. M. Carboneras, M.D. López, P. Rodrigo, M. Campo, B. Torres, E. Otero, and J. Rams, Corrosion Behaviour of Thermally Sprayed Al and Al/SiCp Composite Coatings on ZE41 Magnesium Alloy in Chloride Medium, Corros. Sci., 2010, 52, p 761-768. https://doi.org/10.1016/j.corsci.2009.10.040

    Article  CAS  Google Scholar 

  30. P. Rodrigo, M. Campo, B. Torres, M.D. Escalera, E. Otero, and J. Rams, Microstructure and Wear Resistance of Al–SIC Composites Coatings on ZE41 Magnesium Alloy, Appl. Surf. Sci., 2009, 255, p 9174-9181. https://doi.org/10.1016/j.apsusc.2009.06.122

    Article  CAS  Google Scholar 

  31. S. García-Rodríguez, B. Torres, A.J. López, E. Otero, and J. Rams, Characterization and Mechanical Properties of Stainless Steel Coatings Deposited by HVOF on ZE41 Magnesium Alloy, Surf. Coat. Technol., 2018, 359, p 73-84. https://doi.org/10.1016/j.surfcoat.2018.12.056

    Article  CAS  Google Scholar 

  32. Y. Wang, C. Li, and A. Ohmori, Influence of Substrate Roughness on the Bonding Mechanisms of High Velocity Oxy-Fuel Sprayed Coatings, Surf. Coat. Technol., 2005, 485, p 141-147. https://doi.org/10.1016/j.tsf.2005.03.024

    Article  CAS  Google Scholar 

  33. C. Lyphout, P. Nylén, and L.G. Östergren, Relationships Between Process Parameters, Microstructure and Adhesion Strength of HVOF Sprayed IN718 Coatings, J. Therm. Spray Technol., 2011, 20, p 76-82. https://doi.org/10.1007/s11666-010-9543-7

    Article  CAS  Google Scholar 

  34. C. Lyphout, Adhesion Strength of HVOF Sprayed IN718 Coatings, J. Therm. Spray Technol., 2012, https://doi.org/10.1007/s11666-011-9689-y

    Article  Google Scholar 

  35. C. Li and G. Yang, Relationships Between Feedstock Structure, Particle Parameter, Coating Deposition, Microstructure and Properties for Thermally Sprayed Conventional and Nanostructured WC–Co, Int. J. Refract. Metal Hard Mater., 2013, 39, p 2-17. https://doi.org/10.1016/j.ijrmhm.2012.03.014

    Article  CAS  Google Scholar 

  36. C. Li and Y. Wang, Effect of Particle State on the Adhesive Strength of HVOF Sprayed Metallic Coating, J. Therm. Spray Technol., 2002, 11, p 523-529. https://doi.org/10.1361/105996302770348655

    Article  CAS  Google Scholar 

  37. Y. Wang, C. Li, and A. Ohmori, Examination of Factors Influencing the Bond Strength of High Velocity Oxy-Fuel Sprayed Coatings, Surf. Coat. Technol., 2006, 200, p 2923-2928. https://doi.org/10.1016/j.surfcoat.2004.11.040

    Article  CAS  Google Scholar 

  38. C.R.C. Lima and J.M. Guilemany, Adhesion Improvements of Thermal Barrier Coatings with HVOF Thermally Sprayed Bond Coats, Surf. Coat. Technol., 2007, 201, p 4694-4701. https://doi.org/10.1016/j.surfcoat.2006.10.005

    Article  CAS  Google Scholar 

  39. D. Sen, N.M. Chavan, D.S. Rao, and G. Sundararajan, Influence of Grit Blasting on the Roughness and the Bond Strength of Detonation Sprayed Coating, J. Therm. Spray Technol., 2010, 19, p 805-815. https://doi.org/10.1007/s11666-010-9476-1

    Article  CAS  Google Scholar 

  40. K. Murugan, A. Ragupathy, V. Balasubramanian, and K. Sridhar, Optimizing HVOF Spray Process Parameters to Attain Minimum Porosity and Maximum Hardness in WC–10Co–4Cr Coatings, Surf. Coat. Technol., 2014, 247, p 90-102. https://doi.org/10.1016/j.surfcoat.2014.03.022

    Article  CAS  Google Scholar 

  41. M. Watanabe, S. Kuroda, K. Yokoyama, T. Inoue, and Y. Gotoh, Modified Tensile Adhesion Test for Evaluation of Interfacial Toughness of HVOF Sprayed Coatings, Surf. Coat. Technol., 2008, 202, p 1746-1752. https://doi.org/10.1016/j.surfcoat.2007.07.028

    Article  CAS  Google Scholar 

  42. N. Abu-warda, A.J. López, M.D. López, and M.V. Utrilla, Ni20Cr Coating on T24 Steel Pipes by HVOF Thermal Spray for High Temperature Protection, Surf. Coat. Technol., 2019, https://doi.org/10.1016/j.surfcoat.2019.125133

    Article  Google Scholar 

  43. B. Torres, M. Campo, and J. Rams, Properties and Microstructure of Al–11Si/SiCp Composite Coatings Fabricated by Thermal Spray, Surf. Coat. Technol., 2009, 203(14), p 1947-1955. https://doi.org/10.1016/j.surfcoat.2009.01.021

    Article  CAS  Google Scholar 

  44. K. Dobler, H. Kreye, and R. Schwetzke, Oxidation of Stainless Steel in the High Velocity Oxy-Fuel Process, J. Therm. Spray Technol., 2000, 9, p 407-413. https://doi.org/10.1361/105996300770349872

    Article  CAS  Google Scholar 

  45. S. Vignesh, K. Shanmugam, V. Balasubramanian, and K. Sridhar, Identifying the Optimal HVOF Spray Parameters to Attain Minimum Porosity and Maximum Hardness in Iron Based Amorphous Metallic Coatings, Def. Technol., 2017, 13(2), p 101-110. https://doi.org/10.1016/j.dt.2017.03.001

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the Ministerio de Educación, Cultura y Deporte of Spain (15/03606 FPU Grant), the Agencia Estatal de Investigación (Project RTI2018-096391-B-C31) and the Comunidad de Madrid (Project ADITIMAT-CM S2018/NMT-4411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Torres.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulido-González, N., García-Rodríguez, S., Campo, M. et al. Application of DOE and ANOVA in Optimization of HVOF Spraying Parameters in the Development of New Ti Coatings. J Therm Spray Tech 29, 384–399 (2020). https://doi.org/10.1007/s11666-020-00989-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-00989-9

Keywords

Navigation