Skip to main content
Log in

Surface Integrity of Ni-Rich NiTi Shape Memory Alloy at Optimized Level of Wire Electric Discharge Machining Parameters

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The concern of this experimental work is to study the surface integrity aspects such as surface morphology, three-dimensional surface topography, recast layer, phase analysis, and micro-hardness for Ni55.95Ti44.05 shape memory alloy at the optimized level of wire electric discharge machining parameters. A mathematical model was developed for surface roughness and material removal rate considering servo voltage, pulse on time, wire tension, wire feed rate, and pulse off time using response surface methodology technique. In order to obtain the optimized parameters, multi-objective optimization technique grey relation analysis was utilized. The adequacy of the developed model was also checked by analysis of variance. At optimal parameters setting, i.e., pulse on time 123 µs, pulse off time 58 µs, servo voltage 50 V, wire tension 3 N, and wire feed rate 5 m/min, maximum material removal rate (8.223 mm3/min) and minimum surface roughness (1.93 µm) were achieved. Surface characteristics of machined surface divulge the presence of discharge craters, debris, molten droplets, micro-voids, spherical nodules, and cracks. A recast layer of thickness 19 µm with approximately 21% of foreign elements was deposited on the machined surface at optimized parameters, whereas the micro-hardness of the outer machined surface was found to be increased approximately 1.98 times as compared to micro-hardness of bulk material. X-ray diffraction analysis shows the presence of the following compounds on the machined surface NiTi, Ni4Ti3, Ti4O3, Cu5Zn8, Ni(TiO3), and NiZn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

T ON :

Pulse on time (μs)

T OFF :

Pulse off time (μs)

W g :

Spark gap

d :

Wire diameter

WEDM:

Wire electric discharge machining

SMA:

Shape memory alloy

SV:

Servo voltage (V)

WT:

Wire tension (N)

WF:

Wire feed rate (m/min)

MRR:

Material removal rate (mm3/min)

R a :

Surface roughness (μm)

RSM:

Response surface methodology

CCD:

Central composite design

SEM:

Scanning electron microscope

EDS:

Energy-dispersive spectroscopy

XRD:

x-ray diffraction

GRA:

Grey relation analysis

GRG:

Grey relation coefficient

GRC:

Grey relation grade

ANOVA:

Analysis of variance

SS:

Sum of square

MS:

Mean square

DOF:

Degree of freedom

CI:

Confidence interval

References

  1. J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Des., 2014, 56, p 1078–1113

    Article  Google Scholar 

  2. C. Velmurugan, V. Senthilkumar, S. Dinesh, and D. Arulkirubakaran, Machining of NiTi-Shape Memory Alloys—A Review, Mach. Sci. Technol., 2017, 22(3), p 355–401

    Article  Google Scholar 

  3. H. Bisaria and P. Shandilya, Experimental Studies on Electrical Discharge Wire Cutting of Ni-Rich NiTi Shape Memory Alloy, Mater. Manuf. Process., 2017, 33(9), p 977–985

    Article  Google Scholar 

  4. B. Ramachandran, C.H. Chen, P.C. Chang, Y.K. Kuo, C. Chen, and S.K. Wu, Thermal and Transport Properties of As-Grown Ni-Rich TiNi Shape Memory Alloys, Intermetallics, 2015, 60, p 79–85

    Article  CAS  Google Scholar 

  5. H. Bisaria and P. Shandilya, The Machining Characteristics and Surface Integrity of Ni-Rich NiTi Shape Memory Alloy Using Wire Electric Discharge Machining, Proc. IMechE C J. Mech. Eng. Sci., 2018, https://doi.org/10.1177/0954406218763447

    Article  Google Scholar 

  6. A. Rao, A.R. Srinivasa, and J.N. Reddy, Introduction to Shape Memory Alloys, Design of Shape Memory Alloy (SMA) Actuators, Springer, New York, 2015

    Book  Google Scholar 

  7. P. Shandilya, H. Bisaria, and P.K. Jain, Parametric Study on Recast Layer During Electric Discharge Wire Cutting (EDWC) of Ni-Rich NiTi Shape Memory Alloy, J. Micro Manuf., 2018, 1(2), p 134–141

    Google Scholar 

  8. M. Manjaiah, S. Narendranath, and S. Basavarajappa, Review on Non-conventional Machining of Shape Memory Alloys, Trans. Nonferr. Met. Soc., 2014, 24, p 12–21

    Article  CAS  Google Scholar 

  9. M. Karimzadeh, M.R. Aboutalebi, M.T. Salehi, S.M. Abbasi, and M. Morakabati, Adjustment of Aging Temperature for Reaching Superelasticity in Highly Ni-Rich Ti-51.5Ni NiTi Shape Memory Alloy, Mater. Manuf. Process., 2016, 31, p 1014–1021

    Article  CAS  Google Scholar 

  10. K. Weinert, V. Petzoldt, and D. Kotter, Turning and Drilling of NiTi Shape Memory Alloys, CIRP Ann. Manuf. Technol., 2004, 53, p 65–68

    Article  Google Scholar 

  11. Y. Guo, A. Klink, C. Fu, and J. Snyder, Machinability and Surface Integrity of Nitinol Shape Memory Alloy, CIRP Ann. Manuf. Technol., 2013, 62, p 83–86

    Article  Google Scholar 

  12. S.F. Hsieh, S.L. Chen, H.C. Lin, M.H. Lin, and S.Y. Chiou, The Machining Characteristics and Shape Recovery Ability of Ti-Ni-X (X = Zr, Cr) Ternary Shape Memory Alloys Using the Wire Electro-discharge Machining, Int. J. Mach. Tools Manuf., 2009, 49, p 509–514

    Article  Google Scholar 

  13. M.J. Haddad, F. Alihoseini, M. Hadi, M. Hadad, A.F. Tehrani, and A. Mohammadi, An Experimental Investigation of Cylindrical Wire Electrical Discharge Turning Process, Int. J. Adv. Manuf. Technol., 2010, 46, p 1119–1132

    Article  Google Scholar 

  14. H. Bisaria and P. Shandilya, Experimental Investigation on Wire Electric Discharge Machining (WEDM) of Nimonic C-263 Superalloy, Mater. Manuf. Process., 2019, 34(1), p 83–92

    Article  CAS  Google Scholar 

  15. K. Mouralova, J. Kovar, L. Klakurkova, and T. Prokes, Effect of Width of Kerf on Machining Accuracy and Subsurface Layer After WEDM, J. Mater. Eng. Perform., 2018, 27, p 1908. https://doi.org/10.1007/s11665-018-3239-4

    Article  CAS  Google Scholar 

  16. A. Giridharan and G.L. Samuel, Analysis on the Effect of Discharge Energy on Machining Characteristics of Wire Electric Discharge Turning Process, Proc. IMechE B J. Eng. Manuf., 2015, 230(11), p 2064–2081

    Article  Google Scholar 

  17. S. Bhattacharya, G.J. Abraham, A. Mishra, V. Kain, and G.K. Dey, Corrosion Behavior of Wire Electrical Discharge Machined Surfaces of P91 Steel, J. Mater. Eng. Perform., 2018, 27, p 4561. https://doi.org/10.1007/s11665-018-3558-5

    Article  CAS  Google Scholar 

  18. M. Manjaiah, S. Narendranath, S. Basavarajappa, and V.N. Gaitonde, Effect of Electrode Material in Wire Electro Discharge Machining Characteristics of Ti50Ni50−xCux Shape Memory Alloy, Precis. Eng., 2015, 41, p 68–77

    Article  Google Scholar 

  19. J.F. Liu, Y.B. Guo, T.M. Butler, and M.L. Weaver, Crystallography, Compositions, and Properties of White Layer by Wire Electrical Discharge Machining of Nitinol Shape Memory Alloy, Mater. Des., 2016, 109, p 1–9

    Article  CAS  Google Scholar 

  20. G. Rajyalakshmi and P.V. Ramaiah, Multiple Process Parameter Optimization of Wire Electrical Discharge Machining on Inconel 825 Using Taguchi Grey Relational Analysis, Int. J. Adv. Manuf. Technol., 2013, 69, p 1249–1262

    Article  Google Scholar 

  21. A. Saha and S.C. Mondal, Experimental Investigation and Modelling of WEDM Process for Machining Nano-structured Hardfacing Material, J. Braz. Soc. Mech. Sci. Eng., 2017, 39, p 3439–3455

    Article  CAS  Google Scholar 

  22. H. Majumder, T.R. Paul, V. Dey, P. Dutta, and A. Saha, Use of PCA-Grey Analysis and RSM to Model Cutting Time and Surface Finish of Inconel 800 During Wire Electro Discharge Cutting, Measurement, 2017, 107, p 19–30

    Article  Google Scholar 

  23. D.C. Montgomery, Design and Analysis of Experiments, 4th ed., Wiley, New York, 2001

    Google Scholar 

  24. H. Bisaria and P. Shandilya, Study on Effect of Machining Parameters on Performance Characteristics of Ni-Rich NiTi Shape Memory Alloy During Wire Electric Discharge Machining, Mater. Today Proc., 2018, 5, p 3316–3324

    Article  CAS  Google Scholar 

  25. S. Narendranath, M. Manjaiah, S. Basavarajappa, and V.N. Gaitonde, Experimental Investigations on Performance Characteristics in Wire Electro Discharge Machining of Ti50Ni42.4Cu7.6 Shape Memory Alloy, Proc. IMechE B J. Eng. Manuf., 2013, 227(8), p 1180–1187

    Article  CAS  Google Scholar 

  26. M. Manjaiah, S. Narendranath, S. Basavarajappa, and V.N. Gaitonde, Wire Electric Discharge Machining Characteristics of Titanium Nickel Shape Memory Alloy, Trans. Nonferr. Met. Soc., 2014, 24, p 3201–3209

    Article  CAS  Google Scholar 

  27. N. Sharma, T. Raj, and K.K. Jangra, Parameter Optimization and Experimental Study on Wire Electrical Discharge Machining of Porous Ni40Ti60 Alloy, Proc. IMechE B J. Eng. Manuf., 2015, 231(6), p 956–970

    Article  Google Scholar 

  28. M. Manjaiah, S. Narendranath, and S. Basavarajappa, Wire Electro Discharge Machining Performance of TiNiCu Shape Memory Alloy, Silicon, 2016, 8, p 467–475

    Article  CAS  Google Scholar 

  29. S. Datta, A. Bandyopadhyay, and P.K. Pal, Solving Multi-criteria Optimization Problem in Submerged Arc Welding Consuming a Mixture of Fresh Flux and Fused Slag, Int. J. Adv. Manuf. Technol., 2008, 35, p 935–942

    Article  Google Scholar 

  30. D. Ulutan and T. Ozel, Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review, Int. J. Mach. Tools Manuf., 2011, 51, p 250–280

    Article  Google Scholar 

  31. A. Thakur and S. Gangopadhyay, State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys, Int. J. Mach. Tools Manuf., 2016, 100, p 25–54

    Article  Google Scholar 

  32. H. Bisaria and P. Shandilya, Study on Crater Depth During Material Removal in WEDC of Ni-Rich Nickel–Titanium Shape Memory Alloy, J Braz. Soc. Mech. Sci. Eng., 2019, 41, p 157. https://doi.org/10.1007/s40430-019-1655-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Bisaria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisaria, H., Shandilya, P. Surface Integrity of Ni-Rich NiTi Shape Memory Alloy at Optimized Level of Wire Electric Discharge Machining Parameters. J. of Materi Eng and Perform 28, 7663–7675 (2019). https://doi.org/10.1007/s11665-019-04477-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04477-2

Keywords

Navigation