Skip to main content
Log in

Hot Deformation Behavior of the 20 vol.% TiC/Cu-Al2O3 Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot deformation behavior of the 20 vol.% TiC/Cu-Al2O3 composite was studied using the Gleeble-1500D thermo-mechanical simulator with various strain rates at different deformation temperatures. The softening mechanism due to dynamic recrystallization was a feature of the high-temperature true stress–strain curves. The peak stress increased at the lower deformation temperature and the higher strain rate. Microstructure evolution was explored. Thermal deformation activation energy was calculated as 218.9 kJ/mol, and the constitutive equation was established. The processing map was constructed to obtain optimal processing domain of 700-850 °C and 0.001-0.04 s−1 for hot working.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Chrysanthou and G. Erbaccio, Enhancing the Dispersion of TiC in Copper, J. Mater. Lett., 1996, 15, p 774–775

    Article  Google Scholar 

  2. P.G. Koppad, K.T. Kashyap, V. Shrathinth, T.A. Shetty, and R.G. Koppad, Microstructure and Microhardness of carbon Nanotube Reinforced Copper Nanocomposites, Mater. Sci. Technol., 2013, 29, p 605–609

    Article  Google Scholar 

  3. N. Zarrinfar, A.R. Kennedy, and P.H. Shipway, Reaction Synthesis of Cu–TiCx Master-Alloys for the Production of Copper-Based Composites, Scripta Mater., 2004, 50, p 949–952

    Article  Google Scholar 

  4. Y.H. Liang, H.Y. Wang, Y.F. Yang, Y.Y. Wang, and P.C. Jiang, Evolution Process of the Synthesis of TiC in the Cu–Ti–C System, J. Alloys Compds., 2008, 452, p 298–303

    Article  Google Scholar 

  5. N. Zarrinfar, P.H. Shipway, A.R. Kennedy, and A. Saidi, Carbide Stoichiometry in TiCx and Cu–TiCx Produced by Self-Propagating High-Temperature Synthesis, Scripta Mater., 2002, 46, p 121–126

    Article  Google Scholar 

  6. J.H. Jang, C.H. Lee, H.N. Han, H.K.D.H. Bhadeshia, and D.W. Sun, Modelling Coarsening Behaviour of TiC Precipitates in High Strength, Low Alloy Steels, Mater. Sci. Technol., 2013, 29, p 1074–1079

    Article  Google Scholar 

  7. S. Rathod, O.P. Modi, B.K. Prasad, A. Chrysanthou, D. Vallauri, V.P. Deshmukh, and A.K. Shah, Cast In Situ Cu–TiC Composites: Synthesis by SHS Route and Characterization, Mater. Sci. Eng. A, 2009, 502, p 91–98

    Article  Google Scholar 

  8. H.W. Wang, J.Q. Qi, C.M. Zou, and Z.J. Wei, Effect of Microstructural Characteristics on Room Temperature Tensile Properties of In Situ Synthesised TiC/TA15 Composite, Mater. Sci. Technol., 2012, 28, p 597–602

    Article  Google Scholar 

  9. R.H. Palma, A.H. Seputveda, R.A. Espinoza, and R.C. Montiglio, Performance of Cu-Tic Alloy Electrodes Developed by Reaction Milling for Electrical-Resistance Welding, J. Mater. Process. Technol., 2005, 162, p 62–66

    Article  Google Scholar 

  10. F. Ren, A. Zhi, D. Zhang, B. Tian, A.A. Volinsky, and X. Shen, Preparation of Cu-Al2O3 Bulk Nano-Composites by Combining Cu-Al Alloy Sheets Internal Oxidation with Hot Extrusion, J. Alloys Compd., 2015, 633, p 323–328

    Article  Google Scholar 

  11. F. Ren, X. Li, J. Ren, Y. Xiong, A.A. Volinsky, and B. Tian, Precipitated Al2O3 Phase Characterization in Internally Oxidized Cu–Al Alloy Sheets, J. Alloys Compd., 2017, 695, p 452–457

    Article  Google Scholar 

  12. Y. Zhang, H. Sun, A.A. Volinsky, B. Tian, Z. Chai, and P. Liu, Characterization of the Hot Deformation Behavior of Cu–Cr–Zr Alloy by Processing Maps, Acta Metall. Sin., 2016, 29, p 422–430

    Article  Google Scholar 

  13. Y. Zhang, H. Sun, A.A. Volinsky, B. Tian, K. Song, and B. Wang, Hot Workability and Constitutive Model of the Cu-Zr-Nd Alloy, Vacuum, 2017, 146, p 35–43

    Article  Google Scholar 

  14. Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, and Y. Liu, Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy, J. Mater. Eng. Perform., 2018, 27, p 728–738

    Article  Google Scholar 

  15. Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, and Z. Chai, Small Y Addition Effects on Hot Deformation Behavior of Copper-matrix Alloys, Adv. Eng. Mater., 2017, 19, p 1700197

    Article  Google Scholar 

  16. M. Besterci, J. Ivan, L. Kovac, T. Weissgaerber, and C. Sauer, Strain and Fracture Mechanism of Cu–TiC, Mater. Lett., 1999, 38, p 270–274

    Article  Google Scholar 

  17. J.H. Xiong, J.H. Huang, Z.P. Wang, Y.H. Ban, H. Zhang, and X.K. Zhao, Brazing of Carbon Fibre Reinforced SiC Composite and Ti Alloy Using Cu–Ti–C Filler Materials, Mater. Sci. Technol., 2010, 26, p 356–360

    Article  Google Scholar 

  18. C.R. Rambo, M. Travitzky, K. Zimmerman, and P. Greil, Synthesis of TiC/Ti–Cu Composites by Pressureless Reactive Infiltration of TiCu Alloy into Carbon Preforms Fabricated by 3D-Printing, Mater. Lett., 2005, 59, p 1028–1031

    Article  Google Scholar 

  19. L.X. Zhang, J.C. Feng, and H.B. Liu, High Frequency Induction Brazing of TiC Cermets to Steel with Ag–Cu–Zn Foil, Mater. Sci. Technol., 2008, 24, p 623–626

    Article  Google Scholar 

  20. B.H. Tian, P. Liu, K.X. Song, Y. Li, Y. Liu, F.Z. Ren, and J.H. Su, Microstructure and Properties at Elevated Temperature of a Nano-Al2O3 Particles Dispersion-Strengthened Copper Base Composite, Mater. Sci. Eng. A, 2006, 435, p 705–710

    Article  Google Scholar 

  21. R.X. Chai, D.H. Xu, and C. Guo, Prediction of Constitutive Behaviour of 20CrMnTiH Steel Under Hot Deformation Conditions, Mater. Sci. Technol., 2012, 28, p 857–863

    Article  Google Scholar 

  22. H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani, and R. Bolingbroke, Constitutive Equations for High Temperature Flow Stress of Aluminium Alloys, Mater. Sci. Technol., 1997, 3, p 210–216

    Article  Google Scholar 

  23. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  Google Scholar 

  24. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

    Article  Google Scholar 

  25. Z.Q. Yang, Y. Liu, B.H. Tian, and Y. Zhang, Model of Critical Strain for Dynamic Recrystallization in 10%TiC/Cu-Al2O3 Composite, J. Cent. South Univ., 2014, 21, p 4059–4065

    Article  Google Scholar 

  26. R.H. Palma and A.O. Sepúlveda, Creep Behavior of Two Cu-2 vol.% TiC Alloys Obtained by Reaction Milling and Extrusion, Mater. Sci. Eng. A, 2013, 588, p 82–85

    Article  Google Scholar 

  27. B.K. Prasad, S.P. Narayan, O.P. Modi, N. Ramakrishnan, A.M. Kumar, and A.K. Sachdev, Microstructure and Micromechanism Maps to Optimise Useful Deformation Processing Conditions in Magnesium Alloy, Mater. Sci. Technol., 2011, 27, p 1639–1647

    Article  Google Scholar 

  28. H.Z. Li, H.J. Wang, X.P. Liang, H.T. Liu, Y. Liu, and X.M. Zhang, Hot Deformation and Processing Map of 2519A Aluminum Alloy, Mater. Sci. Eng. A, 2011, 528, p 1548–1552

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Open Cooperation Fund of the Henan Province. The authors are grateful to Prof. Zhou Xudong for his assistance with the experiment. AV acknowledges support from the National Science Foundation (IRES 1358088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Alex A. Volinsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, Z., Tian, B. et al. Hot Deformation Behavior of the 20 vol.% TiC/Cu-Al2O3 Composites. J. of Materi Eng and Perform 27, 4791–4798 (2018). https://doi.org/10.1007/s11665-018-3586-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3586-1

Keywords

Navigation