Skip to main content
Log in

Mechanical Behavior of a Magnesium Alloy Nanocomposite Under Conditions of Static Tension and Dynamic Fatigue

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the intrinsic influence of nano-alumina particulate (Al2O3p) reinforcements on microstructure, microhardness, tensile properties, tensile fracture, cyclic stress-controlled fatigue, and final fracture behavior of a magnesium alloy is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced composite counterpart (AZ31/1.5 vol.% Al2O3) were manufactured by solidification processing followed by hot extrusion. The elastic modulus, yield strength, and tensile strength of the nanoparticle-reinforced magnesium alloy were noticeably higher than the unreinforced counterpart. The ductility, quantified by elongation-to-failure, of the composite was observably lower than the unreinforced monolithic counterpart (AZ31). The nanoparticle-reinforced composite revealed improved cyclic fatigue resistance over the entire range of maximum stress at both the tested load ratios. Under conditions of fully reversed loading (R = −1) both materials showed observable degradation in behavior quantified in terms of cyclic fatigue life. The conjoint influence of reinforcement, processing, intrinsic microstructural features and loading condition on final fracture behavior is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.J. Lloyd, Particle reinforced aluminum and magnesium matrix composites, Int. Mater. Rev., 1994, 39, p 1–24

    Article  CAS  Google Scholar 

  2. T.S. Srivatsan, T.S. Sudarshan, and E.J. Lavernia, Processing of discontinuously-reinforced metal matrix composites by rapid solidification, Prog. Mater Sci., 1995, 39, p 317–409

    Article  CAS  Google Scholar 

  3. F. Czerwinski, Z. Trojanova, Z. Szaraz, P. Palcek and M. Chalupova, Ed., Magnesium Alloys—Design, Processing and Properties, InTech, 2011

  4. H.Z. Ye and X.Y. Liu, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 39, p 6153–6171

    Article  CAS  Google Scholar 

  5. Z. Trojanova, V. Gartnerova, P. Lukac, and Z. Drozd, Mechanical Properties of Mg Alloys Composites Reinforced with Short Saffil® Fibers, J. Alloys Compd., 2004, 378(1–2), p 19–26

    Article  CAS  Google Scholar 

  6. Y. Morisada, H. Fuji, T. Nagaoka, and M. Fukusumi, Effect of Friction Stir Processing with SiC Particles on Microstructure and Hardness of AZ31, Mater. Sci. Eng., A, 2006, 433, p 50–54

    Article  Google Scholar 

  7. J.-J. Wang, J.-H. Guo, and L.-Q. Chen, TiC/AZ91D composites fabricated by in situ reactive infiltration process and its tensile deformation, Trans. Nonferr. Met. Soc. China, 2006, 16(4), p 892–896

    Article  CAS  Google Scholar 

  8. K.F. Ho, M. Gupta, and T.S. Srivatsan, The Mechanical Behavior of Magnesium Alloy AZ91 Reinforced with Fine Copper Particulates, Mater. Sci. Eng., A, 2004, 369(1–2), p 302–308

    Google Scholar 

  9. M. Habibnejad-Korayema, R. Mahmudi, and W.J. Pooleb, Enhanced Properties of Mg-Based Nano-composites Reinforced with Al2O3 Nano-particles, Mater. Sci. Eng., A, 2009, 519, p 198–203

    Article  Google Scholar 

  10. Q.B. Nguyen and M. Gupta, Increasing Significantly the Failure Strain and Work of Fracture of Solidification Processed AZ31B Using Nano-Al2O3 Particulates, J. Alloys Compd., 2008, 459, p 244–250

    Article  CAS  Google Scholar 

  11. M. Paramsothy, S.F. Hasan, N. Srikanth, and M. Gupta, Enhancing Tensile/Compressive Response of Magnesium Alloy AZ31 by Integrating with Al2O3 Nanoparticles, Mater. Sci. Eng., A, 2009, 527, p 162–168

    Article  Google Scholar 

  12. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, The Synergistic Ability of Al2O3 Nanoparticles to Enhance Mechanical Response of Hybrid Alloy AZ31/AZ91, J. Alloys Compd., 2011, 509, p 7572–7578

    Article  CAS  Google Scholar 

  13. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, Enhanced Mechanical Response of Hybrid Alloy AZ31/AZ91 Based on the Addition of Si3N4 Nanoparticles, Mater. Sci. Eng., A, 2011, 528, p 6545–6551

    Article  CAS  Google Scholar 

  14. N. Chawla and Yu-Lin Shen, Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3(6), p 357–370

    Article  CAS  Google Scholar 

  15. J. Llorca, Fatigue of Particle- and Whisker-Reinforced Metal-Matrix Composites, Prog. Mater. Sci., 2002, 47, p 283–353

    Article  CAS  Google Scholar 

  16. T.S. Srivatsan, M. Al-Hajri, and P.C. Lam, The Quasi-Static, Cyclic Fatigue and Final Fracture Behavior of a Magnesium Alloy Metal-Matrix Composite, Composites Part B, 2005, 36, p 209–222

    Article  Google Scholar 

  17. A.R. Vaidya and J.J. Lewandowski, Effects of SiCp Size and Volume Fraction on the High Cycle Fatigue Behavior of AZ91D Magnesium Alloy Composites, Mater. Sci. Eng., A, 1996, 220, p 85–92

    Article  Google Scholar 

  18. N. Llorca, A. Boyce, and T.M. Yue, Fatigue Behavior of Short Alumina Fiber Reinforced AZ91 Magnesium Alloy Metal Matrix Composite, Mater. Sci. Eng., A, 1991, 135, p 247–252

    Article  Google Scholar 

  19. Y. Ochi, K. Masaki, T. Matsumura, and M. Wadasako, Effects of Volume Fraction of Alumina Short Fibers on High Cycle Fatigue Properties of Al and Mg Alloy Composites, Mater. Sci. Eng., A, 2007, 468–470, p 230–236

    Google Scholar 

  20. W. Riehemann, Z. Trojanová, and A. Mielczarek, Fatigue in Magnesium Alloy AZ91-γAlumina Fiber Composite Studied by Internal Friction Measurements, Proc. Eng., 2010, 2(1), p 2151–2160

    Article  Google Scholar 

  21. L.M. Tham, M. Gupta, and L. Cheng, Influence of Processing Parameters During Disintegrated Melt Deposition Processing on Near Net Shape Synthesis of Aluminum Based Metal Matrix Composites, Mater. Sci. Technol., 1999, 15, p 1139–1146

    CAS  Google Scholar 

  22. M. Gupta, M.O. Lai, and S.C. Lim, Regarding the Processing Associated Microstructure and Mechanical Properties Improvement of an Al-4.5 Cu Alloy, J. Alloys Compd., 1997, 260, p 250–255

    Article  CAS  Google Scholar 

  23. M. Gupta and T.S. Srivatsan, Microstructure and Grain Growth Behavior of an Aluminum Alloy Metal Matrix Composite Processed by Disintegrated Melt Deposition, J. Mater. Eng. Perform., 1999, 8(4), p 473–478

    Article  CAS  Google Scholar 

  24. P.S. Ling, M. Gupta, M.O. Lai, and T.S. Srivatsan, Recycling an Aluminum Matrix Composite Using the Technique of Disintegrated Melt Deposition, Alum. Trans.: Int. J., 2000, 2(2), p 209–215

    CAS  Google Scholar 

  25. V.V. Ganesh, M. Gupta, and T.S. Srivatsan, Disintegrated Melt Deposition Technique: A Near Net Shape Manufacturing Process for Metal-Based Materials, J. Recent Res. Dev. Mater. Sci. Eng., 2002, p 119–136, ISBN: 81-7895-057-X

  26. X. Fan, W. Tang, S. Zhang, D. LI, and Y. Peng, Effects of Dynamic Recrystallization in Extruded and Compressed AZ31 Magnesium Alloy, Acta Metall. Sin., 2010, 23(5), p 334–342

    CAS  Google Scholar 

  27. Y. Radi and R. Mahmudi, Effect of Al2O3 Nano-particles on the Microstructural Stability of AZ31Mg Alloy After Equal Channel Angular Pressing, Mater. Sci. Eng., A, 2010, 527, p 2764–2771

    Article  Google Scholar 

  28. Z. Hong-Liang, G. Shao-kang, Z. Fei-yan, L. Qing-kui, and W. Li-guo, Microstructure and Properties of AZ31 Magnesium Alloy with Rapid Solidification, Trans. Nonferr. Met. Soc. China, 2005, 15, p 144–148

    Google Scholar 

  29. F. Czerwinski, K.N. Braszczyńska-Malik, Ed., Magnesium Alloys—Design, Processing and Properties, InTech, 2011, p 95–112

  30. M.S. Yong and A.J. Clegg, Evaluation of Squeeze Cast Magnesium Alloy and Composite, Foundryman, 1999, 92(3), p 71–75

    Google Scholar 

  31. S.F. Hassan and M. Gupta, Effect of Particulate Size of Al2O3 Reinforcement on Microstructure and Mechanical Behavior of Solidification Processed Elemental Mg, J. Alloys Compd., 2006, 419(1–2), p 84–90

    Article  CAS  Google Scholar 

  32. E.D. Francis, N.E. Prasad, C. Ratnam, P.S. Kumar, and V.V. Kumar, Synthesis of Nano Alumina Reinforced Magnesium-Alloy Composites, Int. J. Adv. Sci. Technol., 2011, 27, p 35–44

    Google Scholar 

  33. K.K. Deng, K. Wu, Y.W. Wu, K.B. Nie, and M.Y. Zheng, Effect of Submicron Size SiC Particulates on Microstructure and Mechanical Properties of AZ91 Magnesium Matrix Composites, J. Alloys Compd., 2010, 504, p 542–547

    Article  CAS  Google Scholar 

  34. M. Jayamathy, S.V. Kailas, K. Kumar, S. Seshan, and T.S. Srivatsan, The Compressive Deformation and Impact Response of a Magnesium Alloy: Influence of Reinforcement, Mater. Sci. Eng., A, 2005, 393, p 27–35

    Article  Google Scholar 

  35. X.-F. Gu, W.-Z. Zhang, Z. Min, and Y.E. Fei, Role of Misfit in Precipitation Crystallography in Non-ferrous Metals, Trans. Nonferr. Met. Soc. China, 2007, 17, p s1–s7

    Article  CAS  Google Scholar 

  36. J.F. Nie, Effects of Precipitate Shape and Orientation on Dispersion Strengthening in Magnesium Alloys, Scripta Mater., 2003, 48, p 1009–1015

    Article  CAS  Google Scholar 

  37. B. Chen, D. Lin, Li Jin, X. Zeng, and C. Lu, Equal-Channel Angular Pressing of Magnesium Alloy AZ91 and Its Effects on Microstructure and Mechanical Properties, Mater. Sci. Eng., A, 2008, 483–484, p 113–116

    Google Scholar 

  38. V.V. Ganesh and N. Chawla, Effect of Reinforcement-Particle-Orientation Anisotropy on the Tensile and Fatigue Behavior of Metal-Matrix Composites, Metall. Mater. Trans. A, 2003, 34A, p 342-353

    Google Scholar 

Download references

Acknowledgments

The authors express and extend most sincere thanks and appreciation to the two ‘unknown’ reviewers for their comments, corrections and suggestions. These have been included/incorporated and addressed in the revised manuscript and have helped add to improving the overall quality and content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Srivatsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivatsan, T.S., Godbole, C., Quick, T. et al. Mechanical Behavior of a Magnesium Alloy Nanocomposite Under Conditions of Static Tension and Dynamic Fatigue. J. of Materi Eng and Perform 22, 439–453 (2013). https://doi.org/10.1007/s11665-012-0276-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0276-2

Keywords

Navigation