Skip to main content
Log in

Thermoelectric Properties of Nanograined Si-Ge-Au Thin Films Grown by Molecular Beam Deposition

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Conditions to achieve extremely large Seebeck coefficient and extremely small thermal conductivity in Si-Ge-Au thin films formed of nanosized grains precipitated in amorphous matrix have been investigated. We employed molecular beam deposition to prepare Si1−x Ge x Au y thin films on sapphire substrate. The deposited films were annealed under nitrogen gas atmosphere at 300°C to 500°C for 15 min to 30 min. Nanocrystals dispersed in amorphous matrix were clearly observed by transmission electron microscopy. We did not observe anomalously large Seebeck coefficient, but very low thermal conductivity of nearly 1.0 W K−1 m−1 was found at around 0.2 < x < 0.6. The compositional dependence of the thermal conductivity was well accounted for by the compositional dependence of the mixing entropy. Some of these values agree exactly with the amorphous limit predicted by theoretical calculations. The smallest lattice thermal conductivity found for the present samples is lower than that of nanostructured Si-Ge bulk material for which dimensionless figure of merit of ZT ≈ 1 was reported at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rull-Bravo, A. Moure, J.F. Fernández, and M. Martín-González, RSC Adv. 5, 41653 (2015).

    Article  Google Scholar 

  2. N.G. Galkin, K.N. Galkin, D.L. Goroshko, I. Opahle, A. Parma, E.J. Mceniry, G. Schierning, R. Chavez, R. Schmechel, L. Mg, Q. Zhang, J. He, X.B. Zhao, M.I. Fedorov, and G. Isachenko, Jpn. J. Appl. Phys. 56, 05DA04 (2017).

    Article  Google Scholar 

  3. Y. Okamoto, H. Uchino, T. Kawahara, and J. Morimoto, Jpn. J. Appl. Phys. 38, L945 (1999).

    Article  Google Scholar 

  4. M. Hamabe, H. Takahashi, S. Yamaguchi, T. Komine, T. Eura, H. Okumura, Y. Okamoto, and J. Morimoto, Jpn. J. Appl. Phys. 42, 6779 (2003).

    Article  Google Scholar 

  5. H. Takiguchi, M. Aono, and Y. Okamoto, Jpn. J. Appl. Phys. 50, 041301 (2011).

    Article  Google Scholar 

  6. A. Matoba, K. Sasaki, and M. Kumeda, Jpn. J. Appl. Phys. 48, 061201 (2009).

    Article  Google Scholar 

  7. H. Takiguchi, A. Matoba, K. Sasaki, Y. Okamoto, H. Miyazaki, and J. Morimoto, Mater. Trans. 51, 878 (2010).

    Article  Google Scholar 

  8. Y. Okamoto, J. Saeki, T. Ohtsuki, and H. Takiguchi, Appl. Phys. Express 1, 1170011 (2008).

    Google Scholar 

  9. T. Baba, Jpn. J. Appl. Phys. 48, 05EC01 (2009).

    Google Scholar 

  10. J.P. Dismukes, L. Ekstrom, and R.J. Pfaff, J. Phys. Chem. 68, 3021 (1964).

    Article  Google Scholar 

  11. Y. Okamoto, J. Saeki, T. Ohstuki, and H. Takiguchi, Jpn. J. Appl. Phys. 49, 085801 (2010).

    Article  Google Scholar 

  12. S. Yamasaka, Y. Nakamura, T. Ueda, S. Takeuchi, and A. Sakai, Sci. Rep. 5, 14490 (2015).

    Article  Google Scholar 

  13. Y. Nakamura, M. Isogawa, T. Ueda, S. Yamasaka, H. Matsui, J. Kikkawa, S. Ikeuchi, T. Oyake, T. Hori, J. Shiomi, and A. Sakai, Nano Energy 12, 845 (2015).

    Article  Google Scholar 

  14. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).

    Article  Google Scholar 

  15. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  16. C. Bera, M. Soulier, C. Navone, G. Roux, J. Simon, S. Volz, and N. Mingo, J. Appl. Phys. 108, 124306 (2010).

    Article  Google Scholar 

  17. J. Garg, N. Bonini, B. Kozinsky, and N. Marzari, Phys. Rev. Lett. 106, 045901 (2011).

    Article  Google Scholar 

  18. P. Norouzzadeh, A. Nozariasbmarz, J.S. Krasinski, and D. Vashaee, J. Appl. Phys. 117, 214303 (2015).

    Article  Google Scholar 

  19. J. Moon and A.J. Minnich, RSC Adv. 6, 105154 (2016).

    Article  Google Scholar 

  20. J.L. Feldman, M.D. Kluge, P.B. Allen, and F. Wooten, Phys. Rev. B 48, 12589 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported and based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Nishino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishino, S., Ekino, S., Inukai, M. et al. Thermoelectric Properties of Nanograined Si-Ge-Au Thin Films Grown by Molecular Beam Deposition. J. Electron. Mater. 47, 3267–3272 (2018). https://doi.org/10.1007/s11664-017-5981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5981-z

Keywords

Navigation