Skip to main content
Log in

The Influence of the Inner Topology of Cooling Units on the Performance of Automotive Exhaust-Based Thermoelectric Generators

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Automotive exhaust-based thermoelectric generators are currently a hot topic in energy recovery. The waste heat of automotive exhaust gas can be converted into electricity by means of thermoelectric modules. Generally, inserting fins into the cooling unit contributes to enhancing the heat transfer for a higher power output. However, the introduction of fins will result in a pressure drop in the cooling system. In current research, in order to enhance the heat transfer and avoid a large pressure drop, a cooling unit with cylindrical grooves on the interior surface was proposed. To evaluate the performance of the cylindrical grooves, different inner topologies, including a smooth interior surface,a smooth interior surface with inserted fins and an interior surface with cylindrical grooves, were compared. The results revealed that compared with the smooth interior surface, the smooth interior surface with inserted fins and the interior surface with cylindrical grooves both enhanced the heat transfer, but the interior surface with cylindrical grooves obtained a lower pressure drop. To improve the performance of the cylindrical grooves, different groove-depth ratios were tried, and the results showed that a groove-depth ratio of 0.081 could provide the best overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saidur, N.A. Rahim, H.W. Ping, M.I. Jahirul, S. Mekhilef, and H.H. Masjuki, Energy Policy 37, 3650 (2009).

    Article  Google Scholar 

  2. Y. Wang, C. Dai, and S. Wang, Appl. Energy 112, 1171 (2013).

    Article  Google Scholar 

  3. E.F. Thacher, B.T. Helenbrook, M.A. Karri, and C.J. Richter, Proc. Inst. Mech. Eng. 221, 95 (2007).

    Article  Google Scholar 

  4. D.T. Crane and J.W. Lagrandeur, J. Electron. Mater. 39, 2142 (2010).

    Article  Google Scholar 

  5. X. Liu, Y.D. Deng, Z. Li, and C.Q. Su, Energy Convers. Manag. 90, 121 (2015).

    Article  Google Scholar 

  6. J. Yang, Proceedings of 24th International Conference on Thermoelectrics (2005), pp. 170–174.

  7. Y.D. Deng, X. Liu, S. Chen, and N.Q. Tong, J. Electron. Mater. 42, 1634 (2012).

    Article  Google Scholar 

  8. X. Liu, C.G. Yu, S. Chen, Y.P. Wang, and C.Q. Su, J. Electron. Mater. 43, 2218 (2014).

    Article  Google Scholar 

  9. Y.P. Wang, C. Wu, Z.B. Tang, X. Yang, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 44, 1724 (2015).

    Article  Google Scholar 

  10. Y.P. Wang, S. Li, X. Yang, Y.D. Deng, and C.Q. Su, Energy. Convers. Manag. 126, 266 (2016).

    Article  Google Scholar 

  11. S. Li, Y.P. Wang, T. Wang, X. Yang, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 46, 3062 (2017).

    Article  Google Scholar 

  12. Y.P. Wang, S. Li, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 45, 1792 (2016).

    Article  Google Scholar 

  13. S. Kumar, S.D. Heister, X. Xu, J.R. Salvador, and G.P. Meisner, J. Electron. Mater. 42, 944 (2013).

    Article  Google Scholar 

  14. A. Rezania, L.A. Rosendahl, and S.J. Andreasen, Int. Commun. Heat Mass 39, 1054 (2012).

    Article  Google Scholar 

  15. C.Q. Su, M. Xu, W.S. Wang, Y.D. Deng, X. Wang, and Z.B. Tang, J. Electron. Mater. 44, 1 (2015).

    Article  Google Scholar 

  16. C.Q. Su, D.C. Zhu, Y.D. Deng, Y.P. Wang, and X. Liu, J. Electron. Mater. 46, 2822 (2017).

    Article  Google Scholar 

  17. J.W. Qiang, C.G. Yu, Y.D. Deng, C.Q. Su, Y.P. Wang, and X.H. Yuan, J. Electron. Mater. 45, 1679 (2016).

    Article  Google Scholar 

  18. S. Eiamsa-ard and P. Promvonge, Int. Commun. Heat Mass Transfer 35, 844 (2008).

    Article  Google Scholar 

  19. C. Bi, G.H. Tang, and W.Q. Tao, Appl. Therm. Eng. 55, 121 (2013).

    Article  Google Scholar 

  20. Y.D. Deng, Y.L. Chen, S. Chen, W.D. Xianyu, and C.Q. Su, J. Electron. Mater. 44, 1524 (2015).

    Article  Google Scholar 

  21. A.A. Ramadhan, Y.T.A. Anii, and A.J. Shareef, Heat Mass Transf. 49, 185 (2013).

    Article  Google Scholar 

  22. J.P. Holman, Heat Transfer, 9th ed. (New York: McGraw-Hill, 2002), p. 11.

    Google Scholar 

  23. Q. Du, H. Diao, Z. Niu, G. Zhang, G. Shu, and K. Jiao, Energy Convers. Manag. 101, 9 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D.C., Su, C.Q., Deng, Y.D. et al. The Influence of the Inner Topology of Cooling Units on the Performance of Automotive Exhaust-Based Thermoelectric Generators. J. Electron. Mater. 47, 3320–3329 (2018). https://doi.org/10.1007/s11664-017-5959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5959-x

Keywords

Navigation