Skip to main content

Advertisement

Log in

Ultrabroadband Microwave Metamaterial Absorber Based on Electric SRR Loaded with Lumped Resistors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An ultrabroadband microwave metamaterial absorber (MMA) based on an electric split-ring resonator (ESRR) loaded with lumped resistors is presented. Compared with an ESRR MMA, the composite MMA (CMMA) loaded with lumped resistors offers stronger absorption over an extremely extended bandwidth. The reflectance simulated under different substrate loss conditions indicates that incident electromagnetic (EM) wave energy is mainly consumed by the lumped resistors. The simulated surface current and power loss density distributions further illustrate the mechanism underlying the observed absorption. Further simulation results indicate that the performance of the CMMA can be tuned by adjusting structural parameters of the ESRR and lumped resistor parameters. We fabricated and measured MMA and CMMA samples. The CMMA yielded below −10 dB reflectance from 4.4 GHz to 18 GHz experimentally, with absorption bandwidth and relative bandwidth of 13.6 GHz and 121.4%, respectively. This ultrabroadband microwave absorber has potential applications in the electromagnetic energy harvesting and stealth fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Cui, D.R. Smith, and R. Liu, Metamaterials: Theory, Design and Applications (New York: Springer, 2010), p. 4.

    Book  Google Scholar 

  2. F. Bilotti, A. Alu, N. Engheta, and L. Vegni, in Proceedings of the 2005 Nanoscience and Nanotechnology Symposium (2005), p. NN2005.

  3. H. Mosallaei and K. Sarabandi, in IEEE Antennas and Propagation Society International Symposium (2005), p. 615.

  4. C.M. Watts, X. Liu, and W.J. Padilla, Adv. Mater. 24, 98 (2012).

    Google Scholar 

  5. H.F. Álvarez, M.E. de Cos Gómez, and F. Las-Heras, Materials 8, 1666 (2015).

    Article  Google Scholar 

  6. Y.Z. Cheng, H.L. Yang, Z.Z. Cheng, and N. Wu, Appl. Phys. A 102, 99 (2011).

    Article  Google Scholar 

  7. L.K. Sun, H.F. Cheng, Y.J. Zhou, and J. Wang, Appl. Phys. A 105, 49 (2011).

    Article  Google Scholar 

  8. Y.Z. Cheng, R.Z. Gong, Y. Nie, and X. Wang, Chin. Phys. B 21, 127801 (2012).

    Article  Google Scholar 

  9. Y.Z. Cheng, Y. Wang, Y. Nie, R.Z. Gong, X. Xiong, and X. Wang, J. Appl. Phys. 111, 044902 (2012).

    Article  Google Scholar 

  10. Y. Cui, K.H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N.X. Fang, Nano Lett. 12, 1443 (2012).

    Article  Google Scholar 

  11. Y.Q. Pang, H.F. Cheng, Y.J. Zhou, and J. Wang, J. Appl. Phys. 113, 114902 (2013).

    Article  Google Scholar 

  12. S. Bhattacharyya and K.V. Srivastava, J. Appl. Phys. 115, 064508 (2014).

    Article  Google Scholar 

  13. B.X. Wang, L.L. Wang, G.Z. Wang, W.Q. Huang, X.F. Li, and X. Zhai, IEEE Photon. Technol. Lett. 26, 111 (2014).

    Article  Google Scholar 

  14. Y.Z. Cheng, Z.Z. Cheng, and R.Z. Gong, Opt. Commun. 361, 41 (2016).

    Article  Google Scholar 

  15. Q. Zhang, L. Bai, Z. Bai, P. Hu, and C. Liu, Opt. Express 23, 8910 (2015).

    Article  Google Scholar 

  16. Y.Z. Cheng, X.S. Mao, C.J. Wu, and R.Z. Gong, Opt. Mater. 53, 195 (2016).

    Article  Google Scholar 

  17. O. Ramahi, T. Almoneef, M. Alshareef, and M. Boybay, Appl. Phys. Lett. 101, 173903 (2012).

    Article  Google Scholar 

  18. T.S. Almoneef and O.M. Ramahi, Prog. Electromagn. Res. 146, 109 (2014).

    Article  Google Scholar 

  19. F. Costa, A. Monorchio, and G. Manara, IEEE Trans. Antenn. Propag. 58, 1551 (2010).

    Article  Google Scholar 

  20. L.K. Sun, H.F. Cheng, Y.J. Zhou, and J. Wang, Opt. Express 20, 4675 (2012).

    Article  Google Scholar 

  21. X. Chen, Y. Li, Y. Fu, and N. Yuan, Opt. Express 20, 28347 (2012).

    Article  Google Scholar 

  22. Y. Pinto, J. Sarrazin, A.C. Lepage, X. Begaud, and N. Capet, Appl. Phys. A 115, 541 (2014).

    Article  Google Scholar 

  23. W.S. Yuan and Y.Z. Cheng, Appl. Phys. A 117, 1915 (2014).

    Article  Google Scholar 

  24. J.F. Chen, X.T. Huang, G. Zerihun, Z.Y. Hu, S.M. Wang, G.D. Wang, X.W. Hu, and M.H. Liu, J. Electron. Mater. 44, 4269 (2015).

    Article  Google Scholar 

  25. X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, J. Opt. 17, 055101 (2015).

    Article  Google Scholar 

  26. R.J. Langley and E.A. Parker, Electron. Lett. 18, 294 (1982).

    Article  Google Scholar 

  27. Y. Liu, N. Fang, D. Wu, C. Sun, and X. Zhang, Appl. Phys. A 87, 171 (2007).

    Article  Google Scholar 

  28. H.M. Lee and H.S. Lee, AIP Adv. 3, 052117 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Youth science and technology backbone cultivation plan project of Wuhan University of Science and Technology (Grant No. 2016xz010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Cheng, Y. Ultrabroadband Microwave Metamaterial Absorber Based on Electric SRR Loaded with Lumped Resistors. J. Electron. Mater. 45, 5033–5039 (2016). https://doi.org/10.1007/s11664-016-4693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4693-0

Keywords

Navigation