Skip to main content
Log in

Thermoelectric Properties of Cu-doped Bi2Te2.85Se0.15 Prepared by Pulse-Current Sintering Under Cyclic Uniaxial Pressure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

N-type Cu-doped Bi2Te2.85Se0.15 thermoelectric materials were prepared by pulse-current sintering under cyclic uniaxial pressure, and the effect of the cyclic uniaxial pressure on texture and thermoelectric properties was investigated. Cu x Bi2Te2.85Se0.15 (x = 0−0.03) powder prepared by mechanical alloying was sintered at 673 K using pulse-current heating under 100 MPa of cyclic uniaxial pressure. X-ray diffraction patterns and electron backscattered diffraction analyses showed that the cyclic uniaxial pressure was effective for texture control. The flattened crystal grains were stacked in the thickness direction of the sintered materials and the hexagonal c-plane strongly tended to align in the direction perpendicular to the uniaxial pressure. As a result of this crystal alignment, the electrical resistivity in the direction perpendicular to the uniaxial pressure became smaller than that of equivalent samples prepared with a constant uniaxial pressure. The smaller resistivity led to a larger power factor, and the figure␣of merit was improved by the application of cyclic uniaxial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.M. Yim and F.D. Rosi, Solid State Electron. 15, 1121 (1972).

    Article  Google Scholar 

  2. J.R. Wiese and L. Muldawer, J. Phys. Chem. Solids 15, 13 (1960).

    Article  Google Scholar 

  3. H. Kaibe, Y. Tanaka, M. Sakata, and I. Nishida, J. Phys. Chem. Solids 50, 945 (1989).

    Article  Google Scholar 

  4. I.J. Ohsugi, T. Kojima, and I.A. Nishida, J. Appl. Phys. 68, 5692 (1990).

    Article  Google Scholar 

  5. M. Carle, P. Pierrat, C.L. Graver, S. Scherrer, and H. Scherrer, J. Phys. Chem. Solids 56, 201 (1995).

    Article  Google Scholar 

  6. R. Martin-Lopez, B. Lenoir, A. Dauscher, H. Scherrer, and S. Scherrer, Solid State Commun. 108, 285 (1998).

    Article  Google Scholar 

  7. J. Yang, T. Aizawa, A. Yamamoto, and T. Ohta, Mater. Chem. Phys. 70, 90 (2001).

    Article  Google Scholar 

  8. J.J. Shen, S.N. Zhang, S.H. Yang, Z.Z. Yin, T.J. Zhu, and X.B. Zhao, J. Alloy. Compd. 509, 161 (2011).

    Article  Google Scholar 

  9. J.S. Dyck, B. Mao, J. Wang, S. Dorroh, and C. Burda, J. Electron. Mater. 41, 1408 (2012).

    Article  Google Scholar 

  10. Z.A. Munirw, D.V. Quach, and M. Ohyanagi, J. Am. Ceram. Soc. 94, 1 (2011).

    Article  Google Scholar 

  11. R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Mater. Sci. Eng. R 63, 127 (2009).

    Article  Google Scholar 

  12. W. Zhu, W. Zhao, H. Zhou, J. Yu, D. Tang, Z. Liu, and Q. Zhang, J. Electron. Mater. 43, 1768 (2014).

    Article  Google Scholar 

  13. H. Kim and S. Hong, J. Alloys Compd. 586, S428 (2014).

    Article  Google Scholar 

  14. G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P.-D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, and C. Navone, Mater. Res. Bull. 47, 1954 (2012).

    Article  Google Scholar 

  15. N. Bomshtein, G. Spiridonov, Z. Dashevsky, and Y. Gelbstein, J. Electron. Mater. 41, 1546 (2012).

    Article  Google Scholar 

  16. Y. Pan, T.R. Wei, Q. Cao, and J.F. Li, Mater. Sci. Eng., B 197, 75 (2015).

    Article  Google Scholar 

  17. D.H. Kim, C. Kim, S.H. Heo, and H. Kim, Acta Mater 59, 405 (2011).

    Article  Google Scholar 

  18. H. Kitagawa, K. Nagao, N. Mimura, S. Morito, and K. Kikuchi, J. Electron. Mater. 43, 1574 (2014).

    Article  Google Scholar 

  19. O.B. Sokolov, S.Y. Skipidarov, and N.I. Duvankov, J. Thermoelectr. 4, 48 (2003).

    Google Scholar 

  20. O.B. Sokolov, S.Y. Skipidarov, N.I. Duvankov, and G.G. Shabunina, J. Cryst. Growth 262, 442 (2004).

    Article  Google Scholar 

  21. D.B. Hyun, J.S. Hwang, B.C. You, T.S. Oh, and C.W. Hwang, J. Mater. Sci. 33, 5595 (1998).

    Article  Google Scholar 

  22. W.S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, and Z. Ren, Adv. Energy Mater. 1, 577 (2011).

    Article  Google Scholar 

  23. T.E. Svechnikova, P.P. Konstantinov, and G.T. Alekseeva, Inorg. Mater. 36, 556 (2000).

    Article  Google Scholar 

  24. H. Kitagawa, T. Matsuura, T. Kato, and K. Kamata, J. Electron. Mater. 44, 1870 (2015).

    Article  Google Scholar 

  25. A.J. Schwartz, M. Kumar, and B.L. Adams, eds., Electron Backscatter Diffraction in Materials Science (New York: Kluwer Academic/Plenum, 2000), pp. 51.

  26. F. Izumi and K. Momma, Solid State Phenom. 130, 15 (2007).

    Article  Google Scholar 

  27. D.L. Greenaway and G. Harbeke, J. Phys. Chem. Solids 26, 1585 (1965).

    Article  Google Scholar 

Download references

Acknowledgement

This work was partly supported by the “Supporting-Industry Project” of the Ministry of Economy, Trade and Industry (METI), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kitagawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitagawa, H., Mimura, N., Takimura, K. et al. Thermoelectric Properties of Cu-doped Bi2Te2.85Se0.15 Prepared by Pulse-Current Sintering Under Cyclic Uniaxial Pressure. J. Electron. Mater. 45, 1523–1528 (2016). https://doi.org/10.1007/s11664-015-4094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4094-9

Keywords

Navigation