Skip to main content
Log in

Effects of Compression and Filler Particle Coating on the Electrical Conductivity of Thermoplastic Elastomer Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Elastomeric polymers can be filled with metallic micro- or nanoparticles to obtain electrical conductivity, in which the conductivity is largely determined by the intrinsic conductivity of and contact resistance between the particles. Electrons will flow through the material effectively when the percolation threshold for near-neighbor contacts is exceeded and sufficiently close contacts between the filler particles are realized for electron tunneling to occur. Silver-coated glass microparticles of two types (fibers and spheres) were used as fillers in a thermoplastic elastomer composite based on styrene–ethylene–butylene–styrene copolymer, and the direct-current (DC) resistance and radiofrequency impedance were significantly reduced by coating the filler particles with octadecylmercaptan. Not only was the resistance reduced but also the atypical positive piezoresistivity effect observed in these elastomers was strongly reduced, such that resistivity values below 0.01 Ω cm were obtained for compression ratios up to 20%. In the DC measurements, an additional decrease of resistivity was obtained by inclusion of π-extended aromatic compounds, such as diphenylhexatriene. Some qualitative theories are presented to illuminate the possible mechanisms of action of these surface coatings on the piezoresistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Tanrattanakul and A. Bunchuay, J. Appl. Polym. Sci. 105, 2036 (2007).

    Article  CAS  Google Scholar 

  2. G.R. Ruschau and R.E. Newnham, J. Compos. Mater. 26, 2727 (1992).

    Article  CAS  Google Scholar 

  3. S. Wang, P. Wang, and T. Ding, Polym. Compos. 32, 29 (2011).

    Article  Google Scholar 

  4. L.G. Pedroni, M.A. Soto-Oviedo, J.M. Rosolen, M.I. Felisberti, and A.F. Nogueira, J. Appl. Polym. Sci. 112, 3241 (2009).

    Article  CAS  Google Scholar 

  5. D. Yuping, L. Shunhua, and G. Hongtao, Sci. Technol. Adv. Mater. 6, 513 (2005).

    Article  Google Scholar 

  6. P.K. Pramanik, D. Khastgir, S.K. De, and T.N. Saha, J. Mater. Sci. 9, 3848 (2009).

    Google Scholar 

  7. G.R. Ruschau, S. Yoshikawa, and R.E. Newnham, J. Appl. Phys. 72, 953 (1992).

    Article  CAS  Google Scholar 

  8. W.B. Genetti, W.L. Yuan, B.P. Brady, E.A. O’Rear, C.L. Lai, and D.T.J. Glatzhofer, Mater. Sci. 33, 3085 (1998).

    Article  CAS  Google Scholar 

  9. M. Karttunen, P. Ruuskanen, V. Pitkänen, and W.M. Albers, J. Electron. Mater. 37, 951 (2008).

    Article  CAS  Google Scholar 

  10. S. Ata, K. Kobashi, M. Yumura, and K. Hata, Nano Lett. 12, 2710 (2012). doi:10.1021/nl204221y.

    Article  CAS  Google Scholar 

  11. E.K. Sichel, Carbon Black-Polymer Composites: The Physics of Electrically Conducting Composites (New York: Dekker, 1982).

    Google Scholar 

  12. S. Bhattacharya, Metal Filled Polymers (New York: Dekker, 1986).

    Google Scholar 

  13. S. Radhakrishnan, Polym. Commun. 26, 157 (1985).

    Google Scholar 

  14. D.T. Beruto, M. Capurro, and G. Marro, Sens. Actuators A 117, 301 (2005).

    Article  CAS  Google Scholar 

  15. F. Carmona, R. Canet, and P. Delhaes, J. Appl. Phys. 61, 2550 (1987).

    Article  CAS  Google Scholar 

  16. J. Zhu, S. Wei, J. Ryu, and Z. Guo, J. Phys. Chem. C 115, 13215 (2011).

    Article  CAS  Google Scholar 

  17. S. Radhakrishnan and D.R. Saini, J. Mater. Sci. 26, 5950 (1987).

    Article  Google Scholar 

  18. K.-H. Müller, J. Herrmann, B. Raguse, G. Baxter, and T. Reda, Phys. Rev. B 66, 075417 (2002).

    Article  Google Scholar 

  19. M. Knite, V. Teteris, A. Kiploka, and J. Kaupuzs, Sens. Actuators A 110, 142 (2004).

    Article  CAS  Google Scholar 

  20. B. Lundberg and B. Sundqvist, J. Appl. Phys. 60, 1074 (1986).

    Article  CAS  Google Scholar 

  21. M. Taya, W.J. Kim, and K. Ono, Mech. Mater. 28, 53 (1998).

    Article  Google Scholar 

  22. M. Taya, Composites A 30, 531 (1999).

    Article  Google Scholar 

  23. H. Morinaga, S. Miyake, T. Sato, Eur. Patent 144849 (1985).

  24. K.E. Müggenburg, X.-M. Lin, R.H. Goldsmith, and H.M. Jäger, Nat. Mater. 6, 656 (2007).

    Article  Google Scholar 

  25. J. Tominaga, J. Phys. 15, R1101 (2003).

    CAS  Google Scholar 

  26. W.M. Albers, J. Likonen, J. Peltonen, O. Teleman, and H. Lemmetyinen, Thin Solid Films 330, 114 (1998).

    Article  CAS  Google Scholar 

  27. W.M. Albers, J.O. Lekkala, L. Jeuken, G.W. Canters, and A.F.P. Turner, Bioelectrochem. Bioenergy 42, 25 (1997).

    Article  CAS  Google Scholar 

  28. W. M. Albers, M. Karttunen, T. Vilkman, US 6875375 (2005).

  29. W.M. Albers, G.W. Canters, and J. Reedijk, Tetrahedron 51, 3895 (1995).

    Article  CAS  Google Scholar 

  30. M. Karttunen, J. Mustonen, US 2002/0043654 (2002).

  31. ARP-1705, Coaxial test procedure to measure the RF shielding characterisics of EMI gasket materials, Soc. Automotive Eng. Inc., USA (1981).

  32. F. Pei, S. Wu, G. Wang, M. Xu, S.-Y. Wang, L.-Y. Chen, and Y.J. Jia, Korean Phys. Soc. 55, 1243 (2009).

    Article  CAS  Google Scholar 

  33. Y.L. Chen, C.A. Helm, and J.N. Israelachvili, Langmuir 7, 2694 (1991).

    Article  CAS  Google Scholar 

  34. H. Sellers, A. Ulman, Y. Shnidman, and J.E.J. Eilers, J. Am. Chem. Soc. 115, 9389 (1993).

    Article  CAS  Google Scholar 

  35. S. Subramanian and S. Sampath, J. Indian Inst. Sci 89, 1 (2009).

    CAS  Google Scholar 

  36. D.J. Wold and C.B. Frisbie, J. Am. Chem. Soc. 122, 2970 (2000).

    Article  CAS  Google Scholar 

  37. J. Lu, K.-S. Moon, and C.P. Wong, J. Mater. Chem. 18, 4821 (2008).

    Article  CAS  Google Scholar 

  38. R.E. Holmlin, R. Haag, M.L. Chabinyc, R.F. Ismagilov, A.E. Cohen, A. Terfort, M.A. Rampi, and G.M.J. Whitesides, J. Am. Chem. Soc. 123, 5075 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem M. Albers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albers, W.M., Karttunen, M., Wikström, L. et al. Effects of Compression and Filler Particle Coating on the Electrical Conductivity of Thermoplastic Elastomer Composites. J. Electron. Mater. 42, 2983–2989 (2013). https://doi.org/10.1007/s11664-013-2689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2689-6

Keywords

Navigation