Skip to main content
Log in

Design of a Concentration Solar Thermoelectric Generator

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric technology can be another direct way to convert solar radiation into electricity, using the Seebeck effect. Herein, a prototype concentration solar thermoelectric generator (CTG) and a discrete numerical model for the evaluation of the whole system are presented. The model takes into account the temperature dependence of the thermoelectric material properties by dividing the thermoelectric leg into finite elements and is proved to be more accurate for calculation of the conversion efficiency of the thermoelectric modules when large temperature gradients occur in the CTG system. Based on the best available properties of various bulk thermoelectric materials reported in the literature, the best possible performance of the CTG system is predicted, and the CTG system design, including the selection of the concentration ratio and the cooling method for different thermoelectric materials, are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

q :

Solar irradiance (W/m2)

C g :

Concentration ratio

a c :

Absorptivity of the collector coating

ε c :

Emissivity of the collector coating

σ SB :

Stefan–Boltzmann constant (σ SB = 5.67 × 10−8 W/m2 K4).

Q in :

Incident sunlight energy on a Fresnel lens (W)

Q a :

Heat absorbed by the collector (W)

Q e :

Energy reradiated from the collector surface (W)

Q l :

The sum of heat losses (W)

Q h :

Heat absorbed by the hot junction of the thermoelectric module (W)

Q c :

Heat rejected by the cold junction of the thermoelectric module (W)

P out :

Power output of a thermoelectric module (W)

η opt :

Optical efficiency of the Fresnel lens

η l :

Energy loss ratio

η TE :

Conversion efficiency of the thermoelectric module

η :

Efficiency of the CTG

Af, Ac, Ah:

Area of the lens, collector, and heat sink (m2)

A :

Cross-sectional area of either the p- or n-type leg (m2)

N :

Number of thermocouple pairs in a thermoelectric module

L :

Length of the p- or n-type leg (m)

L i :

Length of the ith subsection (m)

m, n:

Numbers of p- and n-type legs

T1, Tair:

Temperature of the collector surface and of the environment (K)

Th, Tc:

The hot-junction and cold-junction temperature of the thermoelectric module (K)

T i :

Interface temperature between the ith and (i + 1)th subsections (K)

σ(T i ):

Conductivity of the thermoelectric materials at temperature T i (S/m)

κ(T i ):

Thermal conductivity of the thermoelectric materials at temperature T i (W/K/m)

α(T i ):

Seebeck coefficient of the thermoelectric materials at temperature T i (V/K).

α i :

Seebeck coefficient of the ith subsection (V/K)

K i :

Thermal conductivity of the ith subsection (W/K)

R i :

Resistance of the ith subsection (Ω)

R :

Total internal resistance of the thermoelectric module (Ω)

Rch, Rcc:

Contact electrical resistance of the hot junction and cold junction (Ω)

I :

Electrical current through the circuit under matched-load conditions (A)

h :

Heat transfer coefficient of the heat sink (W/K/m2)

p, n:

p- and n-type thermoelectric materials

References

  1. M. Telkes, J. Appl. Phys. 25, 765 (1954).

    Article  CAS  ADS  Google Scholar 

  2. H. Scherrer, L. Vikhor, B. Lenoir, A. Dauscher, and P. Poinas, J. Power Sources 115, 141 (2003).

    Article  CAS  Google Scholar 

  3. S.A. Omer and D.G. Infield, Sol. Energ. Mat. Sol. C 53, 67 (1998).

    Article  CAS  Google Scholar 

  4. Q.J. Zhang, X.F. Tang, P.C. Zhai, M. Niino, and C. Endo, Functionally Graded Materials Viii, vol. 492–493 (Zurich-Uetikon: Trans Tech Publications Ltd., 2005), p. 135.

  5. D. Kraemer, L. Hu, A. Muto, X. Chen, G. Chen, and M. Chiesa, Appl. Phys. Lett. 92, 243503 (2008).

    Article  ADS  Google Scholar 

  6. T. Tritt, Recent Trends in Thermoelectrics Materials Research, Vol. 1–3 (San Diego: Academic, 2000).

    Google Scholar 

  7. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  CAS  Google Scholar 

  8. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  9. H. Li, X.F. Tang, Q.J. Zhang, and C. Uher, Appl. Phys. Lett. 94, 102114 (2009).

    Article  ADS  Google Scholar 

  10. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. M. Freunek, M. Muller, T. Ungan, W. Walker, and L.M. Reindl, J. Electron. Mater. 38, 1214 (2009).

    Article  CAS  ADS  Google Scholar 

  12. B. Lenoir, A. Dauscher, P. Poinas, H. Scherrer, and L. Vikhor, Appl. Therm. Eng. 23, 1407 (2003).

    CAS  Google Scholar 

  13. H.X. Xi, L.G. Luo, and G. Fraisse, Renew Sust. Energ. Rev. 11, 923 (2007).

    Article  CAS  Google Scholar 

  14. H.J. Goldsmid, CRC Handbook of Thermoelectrics, chapter 3, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995),

    Google Scholar 

  15. C. Wu, Appl. Therm. Eng. 16, 63 (1996).

    Article  Google Scholar 

  16. W. Seifert, M. Ueltzen, and E. Muller, Physica Status Solidi A Appl. Res. 194, 277 (2002).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Hi-TECH Research and Development Program of China (Grant No. AA05Z444), the National Basic Research Program of China (Grant No. 2007CB6 07506), and the National Natural Science Foundation of China (Grant No. 50930004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Cai, L., Zhai, P. et al. Design of a Concentration Solar Thermoelectric Generator. J. Electron. Mater. 39, 1522–1530 (2010). https://doi.org/10.1007/s11664-010-1279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1279-0

Keywords

Navigation