Skip to main content
Log in

Low-cycle fatigue behavior and mechanisms of a lead-free solder 96.5Sn/3.5Ag

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low-cycle fatigue tests of as-cast Sn-Ag eutectic solder (96.5Sn/3.5Ag) were performed using a noncontact strain controlled system at 20°C. The fatigue behavior followed the Coffin-Manson equation with a fatigue-ductility exponent of 0.76. Without local deformation and stress concentration at contact points between the extensometer and the specimen surface in strain-controlled fatigue tests, crack initiation and propagation behavior was observed on the specimen surface using a replication technique. After failure, the longitudinal cross sections were also examined using scanning electron microscopy (SEM). Microcracks initiated from steps at the boundary between the Sn-dendrite and the Sn-Ag eutectic structure and cavities along the boundaries especially around the Ag3Sn particles. Stage II crack propagated in mixed manner with intergranular cracks along the Sn-dendrite boundaries and transgranular cracks through the Sn-dendrites and the Sn-Ag eutectic structure. Propagation of stage II cracks could be expressed by the relation of dac/dN = 4.7 × 10−11[ΔJ]1.5, where ac is the average crack length and ΔJ is the J-integral range. After fatigue tests, small grains were observed in Sn-dendrites near the fracture surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000).

    Article  Google Scholar 

  2. Y. Kariya and M. Otsuka, J. Electron. Mater. 27, 1229 (1998).

    Article  CAS  Google Scholar 

  3. H.D. Solomon, J. Electron. Packaging 113, 102 (1991).

    Google Scholar 

  4. J. Liang, N. Gollhardt, P.S. Lee, S.A. Schroeder, and W.L. Morris, Fatigue Fract. Eng. Mater. Struct. 19, 1401 (1996).

    Article  CAS  Google Scholar 

  5. R.S. Whitelaw, R.W. Neu, and D.T. Scott, J. Electron. Packaging 121, 99 (1999).

    CAS  Google Scholar 

  6. C. Kanchanomai, S. Yamamoto, Y. Miyashita, Y. Mutoh, and A.J. McEvily, Int. J. Fatigue 24, 57 (2002).

    Article  CAS  Google Scholar 

  7. ASTM, ASTM E606: Standard Practice for Strain-Controlled Fatigue Testing (Philadelphia, PA: ASTM, 1998), vol. 03.01, p. 525.

    Google Scholar 

  8. E.C. Cutiongco, S. Vaynman, M.E. Fine, and D.A. Jeannotte, J. Electron. Packaging 112, 110 (1990).

    Google Scholar 

  9. J.F. Smith and R.R. Kubalak, in Metals Handbook, ed. W.A. Cubberly (Metals Park, OH: ASM, 1979), p. 613.

    Google Scholar 

  10. L.F. Coffin, Jr., Trans. ASME 76, 931 (1954).

    CAS  Google Scholar 

  11. S.S. Manson, Behavior of Materials under Conditions of Thermal Stress, Heat Transfer Symp. (Ann Arbor, MI: University of Michigan Press, 1953), p. 9.

    Google Scholar 

  12. C. Kanchanomai, Y. Miyashita, and Y. Mutoh, Int. J. Fatigue (to be published).

  13. Y. Kariya and M. Otsuka, J. Electron. Mater. 27, 866 (1998).

    Article  CAS  Google Scholar 

  14. H.D. Solomon, J. Electron. Packaging 112, 123 (1990).

    Google Scholar 

  15. H.D. Solomon, J. Electron. Packaging 111, 75 (1989).

    Article  Google Scholar 

  16. Z. Mei, J.W. Morris, Jr., M.C. Shine, and T.S.E. Summers, J. Electron. Mater. 20, 599 (1991).

    CAS  Google Scholar 

  17. H.D. Solomon, Electronic Packaging-Materials and Processes, ed. J.A. Sartell (Metals Park, OH: ASM, 1985), p. 29.

    Google Scholar 

  18. X.Q. Shi, H.L.J. Pang, W. Zhou, and Z.P. Wang, Int. J. Fatigue, 22, 217 (2000).

    Article  CAS  Google Scholar 

  19. F. Gabrielli and V. Lupinc, Proc. ICSMA 5 (Aachen: Pergamon Press, 1979), vol. 1, p. 485.

    Google Scholar 

  20. H.K. Kim and J.C. Earthman, Acta Metall. Mater. 42, 679 (1994).

    Article  CAS  Google Scholar 

  21. W.H. Kim and C. Laird, Acta Met. 26, 777 (1978).

    Article  CAS  Google Scholar 

  22. W.H. Kim and C. Laird, Acta Met. 26, 789 (1978).

    Article  CAS  Google Scholar 

  23. V. Raman and T.C. Reiley, Metall. Trans. A 19A, 1533 (1988).

    CAS  Google Scholar 

  24. V. Raman and T.C. Reiley, J. Mater. Sci. Lett. 6, 549 (1987).

    Article  CAS  Google Scholar 

  25. A.I. Attarwala, J.K. Tien, G.Y. Masada, and G. Dody, J. Electron. Packaging 114, 109 (1992).

    Google Scholar 

  26. J.K. Tien, B.C. Hentrix, and A.I. Attarwala, NEPCON West’90 Conf. Proc., (1990), vol. II, Cahners Exhibition (Illinois) p. 1353.

  27. H. Jiang, R. Hermann, and W.J. Plumbridge, J. Mater. Sci. 31, 6455 (1996).

    Article  CAS  Google Scholar 

  28. Z. Guo, A.F. Sprecher, and H. Conrad, 41st IEEE ECTC Conf. (New York: IEEE, 1991), p. 658.

    Google Scholar 

  29. B.Z. Margolin and V.I. Kostylev, Fatigue Fract. Eng. Mater. Struct. 22, 967 (1999).

    Article  Google Scholar 

  30. N. Miura, T. Shimakawa, Y. Nakayama, and Y. Takahashi, Assessment Methodologies for Preventing Failure: Deterministic and Probabilistic Aspects and Weld Residual Stress (New York: ASME, 2000), vol. I, p. 111.

    Google Scholar 

  31. T. Shimakawa, H. Ogawa, Y. Nakayama, N. Miura and Y. Takahashi, Assessment Methodologies for Preventing Failure: Deterministic and Probabilistic Aspects and Weld Residual Stress (New York: ASME, 2000), vol. I, p. 119.

    Google Scholar 

  32. Stress Intensity Factors Handbook, ed. Y. Murakami, S. Aoki, N. Hasebe, Y. Itoh, H. Miyata, N. Miyzaki, H. Terada, K. Tohgo, M. Toya, R. Yuuki (London: Pergamon Press, 1987).

    Google Scholar 

  33. J. Zhao, Y. Miyashita, and Y. Mutoh, Int. J. Fatigue 23, 723 (2001).

    Article  CAS  Google Scholar 

  34. D. Hardwick, C.M. Sellars, and W.J. McG. Tegart, J. Inst. Met. 90, 21 (1961–1962).

    Google Scholar 

  35. D. McLean and M.H. Farmer, J. Inst. Met. 85, 41 (1956–1957).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanchanomai, C., Miyashita, Y. & Mutoh, Y. Low-cycle fatigue behavior and mechanisms of a lead-free solder 96.5Sn/3.5Ag. J. Electron. Mater. 31, 142–151 (2002). https://doi.org/10.1007/s11664-002-0161-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0161-0

Key words

Navigation