Skip to main content
Log in

Effects of Nitrogen Segregation and Solubility on the Formation of Nitrogen Gas Pores in 21.5Cr-1.5Ni Duplex Stainless Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The nitrogen gas pore-formation mechanism was discussed with regard to the solidification of 21.5Cr-1.5Ni duplex stainless steels (DSSs) by considering nitrogen segregation and solubility. The segregation behavior of nitrogen was investigated with phase transformation using experimental detection methods and Thermo-Calc software calculations. The process associated with the formation of gas pores was illustrated clearly. The factors that influenced the formation of gas pores, including shrinkage, nitrogen content, solidification pressure, and alloying elements (Mn and Cr), were discussed in detail. The formation of nitrogen-rich phases [austenite phase (FCC), AlN, and hexagonal close packed] is beneficial to eliminate nitrogen segregation and suppressing gas pore formation. The nitrogen-depleted phase (ferrite phase (BCC)) exhibits an opposite effect. Regular gas pores are initially formed in locations consisting of the austenite phase. As the gas pores lengthen, ferrite and austenite phases alternately form around the gas pores. Solidification shrinkage can promote the formation of irregular gas pores at the centerline of the ingots. Increasing the nitrogen content is favorable to the formation of gas pores. Increasing solidification pressure is effective with regard to suppressing the formation of gas pore defects in DSSs. Increasing the Mn content can reduce the likelihood of gas pore formation; this can be attributed to the increased nitrogen solubility in the residual liquid surrounding the dendrites and the formation tendency of the nitrogen-rich phase. Increasing the Cr content exhibits a dual effect on gas pore formation, which is caused by the increased nitrogen solubility and segregation in the residual liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. 1. A. Poznansky and P.J. Grobner: J.Mater. Energy Syst., 1985, vol. 7, pp. 64-74.

    Article  Google Scholar 

  2. 2. X.C. Ma, Z.J. An, L. Chen, T.Q. Mao, J.F. Wang, H.J. Long and H.Y. Xue: Mater.Des., 2015, vol. 86, pp. 848-854.

    Article  Google Scholar 

  3. 3. J. Olsson and M.Snis: Desalination, 2007, vol. 205, pp. 104-113.

    Article  Google Scholar 

  4. 4. M. Esmailzadeh, M. Shamanian, A. Kermanpur and T. Saeid: Mater. Sci. Eng. A, 2013, vol. 561, pp. 486-491.

    Article  Google Scholar 

  5. 5. S.H. Hong and Y.S. Han: Met.Mater., 2000, vol. 6, pp. 161-167.

    Article  Google Scholar 

  6. 6. H.M. Chung: Int.J. Pressure Vessels Piping, 1992, vol. 50, pp. 179-213.

    Article  Google Scholar 

  7. 7. R. Arola, J. Wendt and E. Kivineva: In. Mater. Sci. Forum, 1999, vol. 318, pp 297-302.

    Article  Google Scholar 

  8. 8. Y.H. Park, J.W. Kim, S.K. Kim, Y.D. Lee and Z.H. Lee: Metall. Mater. Trans. B, 2003, vol. 34, pp. 313-320.

    Article  Google Scholar 

  9. 9. C. Andreev and T. Rashev: In. Mater. Sci. Forum, 1999, vol. 318, pp 255-260.

    Article  Google Scholar 

  10. 10. A. Mitchell and H. Frederiksson: J. Mater. Sci., 2004, vol. 39, pp. 7275-7283.

    Article  Google Scholar 

  11. 11. M.R. Ridolfi and O. Tassa: Intermetallics, 2003, vol. 11, pp. 1335-1338.

    Article  Google Scholar 

  12. 12. S.H. Yang and Z.H. Lee: Mater. Sci. Eng. A, 2006, vol. 417, pp. 307-314.

    Article  Google Scholar 

  13. 13. Y.H. Park and Z.H. Lee: Mater. Sci. Eng. A, 2001, vol. 297, pp. 78-84.

    Article  Google Scholar 

  14. 14. M.B. Cortie and J.H. Potgieter: Metall. Trans. A, 1991, vol. 22, pp. 2173-2179.

    Article  Google Scholar 

  15. 15. V.J. Gadgil, A.G.B.M. Sasse, J.J. Swens and B.H. Kolster: J. Mater. Eng., 1991, vol. 13, pp. 291-297.

    Article  Google Scholar 

  16. S.H. Yang and Z.H. Lee: In. Mater. Sci. Forum, 2005, vol. 475, pp 2679-2682.

    Article  Google Scholar 

  17. 17. K. Kubo and R. D Pehlke: Metall. Trans. B, 1985, vol. 16, pp. 359-366.

    Article  Google Scholar 

  18. 18. A.K. Gupta, B.K. Saxena, S.N. Tiwari and S.L. Malhotra: J. Mater. Sci., 1992, vol. 27, pp. 853-862.

    Article  Google Scholar 

  19. 19. A.H. Satir-Kolorz and H.K. Feichtinger: Zeitschrift für Metallkunde, 1991, vol. 82, pp. 689-697.

    Google Scholar 

  20. 20. G. Stein and I. Hucklenbroich: Mater. Manuf. Processes, 2004, vol. 19, pp. 7-17.

    Article  Google Scholar 

  21. 21. A.D. Schino, J.M. Kenny, M.G. Mecozzi and M. Barteri: J. Mater. Sci., 2000, vol. 35, pp. 4803-4808.

    Article  Google Scholar 

  22. 22. P.S. Wei and S.Y. Hsiao: Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 8129-8138.

    Article  Google Scholar 

  23. 23. A.Di Schino, M.G. Mecozzi, M. Barteri and J. M. Kenny: J. Mater. Sci., 2000, vol. 35, pp. 375-380.

    Article  Google Scholar 

  24. 24. J.P. Liang, Y.L. Gao, R.X. Li and Q.J. Zhai: Ironmaking Steelmaking, 2009, vol. 36, pp. 603-609.

    Article  Google Scholar 

  25. 25. A.G. Svyazhin, V.E. Bazhenov, L.M. Kaputkina, J. Siwka and V.E. Kindop: Metallurgist, 2015, vol. 58, pp. 959-966.

    Article  Google Scholar 

  26. 26. A. Makaya and H. Fredriksson: Int. J. Cast Met. Res, 2013, vol. 20, pp. 73-83.

    Article  Google Scholar 

  27. A.G. Svyazhin, L.M. Kaputkina, V.E. Bazhenov, Z. Skuza, E. Siwka and V.E. Kindop: Phys Met Metallogr, 2015, vol. 116, pp. 552-561.

    Article  Google Scholar 

  28. 28. Z.H. Jiang, H.B. Li, Z.P. Chen, Z.Z. Huang, D.L. Zou and L.K. Liang: Steel Res. Int., 2005, vol. 76, pp. 740-745.

    Article  Google Scholar 

  29. 29. H. Feichtinger and G. Stein: In. Mater. Sci. Forum, 1999, vol. 318, pp. 261-270.

    Article  Google Scholar 

  30. 30. D.R. Poirier: Metall. Trans. B, 1986, vol. 18, pp. 245-255.

    Article  Google Scholar 

  31. 31. P.S. Wei, Y.K. Kuo, S.H Chiu and C.Y. Ho: Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 263-280.

    Article  Google Scholar 

  32. 32. M. Heidarzadeh and H. Keshmiri: J Iron Steel Res Int, 2013, vol. 20, pp. 78-83.

    Article  Google Scholar 

  33. 33. J.Q. Wang, P.X. Fu, H.W. Liu, D.Z. Li and Y.Y. Li: Mater. Des., 2012, vol. 35, pp. 446-456.

    Article  Google Scholar 

  34. 34. P. Lan, H.Y. Tang and J.Q. Zhang: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1-21.

    Article  Google Scholar 

Download references

Acknowledgments

The current research study was financially supported by the National Natural Science Foundation of China (Nos. 51304041, 51434004, U1435205), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2012BAE04B01), the High Technology Research and Development Program of China (Grant No. 2015AA034301), China Postdoctoral Science Foundation (No. 2013M530936), and the Fundamental Research Funds for the Central Universities (No. N150204007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou-Hua Jiang or Hua-Bing Li.

Additional information

Manuscript submitted May 26, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, HC., Jiang, ZH., Li, HB. et al. Effects of Nitrogen Segregation and Solubility on the Formation of Nitrogen Gas Pores in 21.5Cr-1.5Ni Duplex Stainless Steel. Metall Mater Trans B 48, 2493–2503 (2017). https://doi.org/10.1007/s11663-017-1021-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1021-x

Keywords

Navigation