Skip to main content
Log in

Sulfurization of Fe-Ni-Cu-Co Alloy to Matte Phase by Carbothermic Reduction of Calcium Sulfate

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Calcium sulfate (CaSO4) is proposed as an alternative sulfur source to convert the Fe-Ni-Cu-Co alloy to the matte phase. Solid carbon was used as a reducing agent and the influence of oxide fluxes on the sulfurization efficiency at 1673 K (1400 °C) in a CO-CO2-SO2-Ar atmosphere was investigated. When CaSO4 was equilibrated with the Fe-Ni-Cu-Co alloy without any reducing agent, it was reduced by Fe in the liquid alloy, resulting in the formation of FeS. The sulfurization efficiency was about 56 pct, even though an excess amount of CaSO4 (gypsum equivalent, G eq = 1.7) was added. Adding solid carbon as the reducing agent significantly shortened the equilibration time from 36 to 3.5 hours and increased the sulfurization efficiency from 56 to 91 pct, even though the amount of carbon was lower than the theoretical equivalent for carbothermic reduction of CaSO4, viz. C eq = 0.7. Although CaS (not FeS) was formed as a primary reaction product, it continuously reacted with CaSO4, forming CaO-rich slag. Neither the carbothermic reduction time nor the sulfurization efficiency were affected by the addition of Al2O3 (-SiO2) fluxes, but the equilibration time fell to 2.5 hours with the addition of Al2O3-Fe2O3 flux because the former systems produced primarily calcium silicate and calcium aluminate, which have relatively high melting points, whereas the latter system produced calcium ferrite, which has a lower melting point. Consequently, calcium sulfate (waste gypsum) can replace expensive pure sulfur as a raw material in the sulfurization of Fe-Ni-Cu-Co alloy with small amounts of iron oxide (Fe2O3) as a flux material. The present results can be used to improve the recovery of rare metals, such as Ni and Co, from deep sea manganese nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.H. Park, D. Mohapatra, and B.R. Reddy: Sep. Purif. Technol., 2006, vol. 51, pp. 332-37.

    Article  Google Scholar 

  2. P.A. Rona: Science, 2003, vol. 299, pp. 673-74.

    Article  Google Scholar 

  3. C.W. Nam, B.S. Kim, and K.H. Park: Kor. Soc. Geosyst. Eng., 2003, vol. 40, pp. 191-97.

    Google Scholar 

  4. K.H. Park, D. Mohapatra, H.I. Kim, and X. Guo: Sep. Purif. Technol., 2007, vol. 56, pp. 303-10.

    Article  Google Scholar 

  5. K.H. Park, C.W. Nam, J.S. Chang, S.C. Ahan, and H.I. Kim: J. Kor. Inst. Resources Recycling, 2008, vol. 17, pp. 51-58.

    Google Scholar 

  6. K.H. Park and C.W. Nam: Trends in Met. & Mater. Eng., 2002, vol. 15, pp. 15-23.

    Google Scholar 

  7. R. Kuusik, P. Saikkonen, and L. Niinisto: J. Therm. Anal., 1985, vol. 30, pp.187-93.

    Article  Google Scholar 

  8. T.D. Wheelock and C.E. Morris: TIZ-Fachberichte., 1986, vol. 110, pp. 37-46.

    Google Scholar 

  9. J.S. Oh and T.D. Wheelock: Ind. Eng. Chem. Res., 1990, vol. 29, pp. 544-50.

    Article  Google Scholar 

  10. X. Yang, Z. Zhang, X. Wang, L. Yang, B. Zhong, and J. Liu: J. Chem. Thermodyn., 2013, vol. 57, pp. 39-45.

    Article  Google Scholar 

  11. X. Zhang, X. Song, Z. Sun, P. Li, and J. Yu: Ind. Eng. Chem. Res., 2012, vol. 51, pp. 6563-70.

    Article  Google Scholar 

  12. B.B. Kale, A.R. Pande, and A. N. Gokarn: Metall. Trans. B., 1992, vol 23B, pp. 567-72.

    Article  Google Scholar 

  13. L. Ma, P. Ning, S. Zheng, X. Niu, W. Zhang, and Y. Du: Ind. Eng. Chem. Res., 2010, vol. 49, pp. 3597-3602.

    Article  Google Scholar 

  14. N. Mihara, D. Kuchar, Y. Kojima, and H. Matsuda: J. Mater. Cycles. Waste Manag., 2007, vol. 9, pp. 21-26.

    Article  Google Scholar 

  15. E.S. Newman: J. Res. Natl Bur Stand., 1941, vol. 27, pp. 191–96.

  16. T.D. Wheelock and D.R. Boylan: Ind. Eng. Chem.., 1960, vol. 52, pp. 215-18.

    Article  Google Scholar 

  17. Y. Liu, H. Zhou, Y.H. Liu, R. Stanger, L. Elliot, T. Wall, and K.F. Cen: Cleaner Combustion and Sustainable World., H. Qi and B. Zhao ed., Tsinghua University Press, Springer, 2013, pp. 323–29.

  18. L.M. Diaz-Bossio, S.E. Squier, and A.H. Pulsifer: Chem. Eng. Sci., 1985, vol. 40, pp. 319-24.

    Article  Google Scholar 

  19. E.M. van der Merwe, C.A. Strydom, and J.H. Potgieter: Thermochim. Acta., 1999, vol. 340-341, pp. 431-37.

    Article  Google Scholar 

  20. J. Talukdar, P. Basu, and J.H. Greenblatt: Fuel, 1996, vol. 75, pp. 1115-23.

    Article  Google Scholar 

  21. B. Kamphuis, A.W. Potma, W. Prins, and W.P.M. van Swaaij: Chem. Eng. Sci., 1993, vol. 48, pp. 105-16.

    Article  Google Scholar 

  22. E.T. Turkdogan and J.V. Vinters: Trans. Inst. Mining & Metall. Section C, 1976, vol. 85, pp. 117-23.

    Google Scholar 

  23. Iv. Gruncharov, Y. Pelovski, G. Bechev, Iv. Dombalov, and Pl. Kirilov: J. Therm. Anal., 1988, vol. 33, pp. 597-602

    Article  Google Scholar 

  24. J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, and Y.B. Kang: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 3181-86.

    Article  Google Scholar 

  25. www.factsage.com (May 2015).

  26. J.H. Park and G.H. Park: ISIJ Int., 2012, vol. 52, pp. 764-69.

    Article  Google Scholar 

  27. K.Y. Ko and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 440-42.

    Article  Google Scholar 

  28. D.J. Kim and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 875-86.

    Article  Google Scholar 

  29. J.H. Heo, S.S. Park, and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1098-1105.

    Article  Google Scholar 

  30. J.H. Park: ISIJ Int., 2012, vol. 52, pp. 2303-04.

    Article  Google Scholar 

  31. J.H. Park: Met. Mater. Int., 2013, vol. 19, pp. 577-84.

    Article  Google Scholar 

  32. J.H. Heo, B.S. Kim, and J.H. Park: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1352-63.

    Article  Google Scholar 

  33. S.K. Kwon, Y.M. Kong, and J.H. Park: Met. Mater. Int., 2014, vol. 20, pp. 959-66.

    Article  Google Scholar 

  34. Y. Kang, J. Jang, J.H. Park, and C. Lee: Met. Mater. Int., 2014, vol. 20, pp. 119-27.

    Article  Google Scholar 

  35. Y.S. Han and J.H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 235-42.

    Article  Google Scholar 

  36. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980, pp. 1–24.

    Google Scholar 

Download references

Acknowledgment

This work was financially supported by Ministry of Oceans and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Manuscript submitted June 4, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, E.H., Nam, C.W., Park, K.H. et al. Sulfurization of Fe-Ni-Cu-Co Alloy to Matte Phase by Carbothermic Reduction of Calcium Sulfate. Metall Mater Trans B 47, 1103–1112 (2016). https://doi.org/10.1007/s11663-016-0590-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0590-4

Keywords

Navigation