Skip to main content
Log in

Optimizing Powder Distribution in Production of Surface Nano-Composite via Friction Stir Processing

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Notwithstanding the extensive interest in using friction stir processing (FSP) for producing metal matrix composite (MMC), more uniform powder distribution along the composite zone is still needed. In most studies, one groove is machined out of the specimen, filled with powder, and then processed by identical passes. In this investigation, an innovative technique was used that involved machining out of three gradient grooves with increasing depth from the advancing side to the retreating side instead of using a conventional sample with just a groove. Macro, optical, and scanning electron microscopy (SEM) images and microhardness test were used to evaluate the powder distribution. The images indicated that the most uniform distribution of SiC particles in the whole composite zone was related to a three-gradient grooves sample. Microohardness measurement of a three-gradient grooves sample, carried out along the cross section and perpendicular to the traverse direction of FSP, experiences less fluctuation in hardness compared with other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Oh-ishi and T.R. McNelley: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 2951-61.

    Article  Google Scholar 

  2. Q.J. Su, T.W Nelson, and C.J. Sterling: Scripta Mater., 2005, vol. 52, pp. 135–40, 192–97.

  3. T.U. Seidel and A.P. Reynolds: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2879-87.

    Article  Google Scholar 

  4. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng., 2005, vol. 50, pp. 1-78.

    Article  Google Scholar 

  5. R.S. Mishra, Z.Y. Ma, and I. Charit: Mater. Sci. Eng. A, 2003, vol. 341, pp. 307-10.

    Article  Google Scholar 

  6. A. Shafiei-Zarghani, S.F. Kashani-Bozorg, and A.F. Zarei-Hanzaki: Mater. Sci. Eng. A, 2009, vol. 500, pp. 84-91.

    Article  Google Scholar 

  7. W. Wang, Q.Y shi, P. Liu, H. Ke, and T. Li: J. Mater. Process. Technol., 2009, vol. 209, pp. 2099-2103.

    Article  Google Scholar 

  8. Y. Morisada, H. Fuji, T.K. Nagaoka, and K. Nogi: Mater. Sci. Eng. A, 2006, vol. 419, pp. 344-48.

    Article  Google Scholar 

  9. B. Zahmatkesh and M.H. Enayati: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6734-40.

    Article  Google Scholar 

  10. M. Dixit, J.W. Newkirk, and R.S. Mishra: Scripta Mater., 2007, vol. 56, pp. 541-44.

    Article  Google Scholar 

  11. A. Heydarian and K. Dehghani: 3rd International Conference on Ultrafine Grained and Nanostructured Materials, 2011.

  12. K. Colligan: Weld. J., 1999, vol. 78, no. 7, pp. 229s-37s.

    Google Scholar 

  13. O. Lorrain, V. Favier, H. Zahrouni, and D. Lawrjaniec: J. Mater. Process. Technol., 2010, vol. 210, pp. 603-09.

    Article  Google Scholar 

  14. M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, and A.C. Nunes: Mater. Charact., 2003, vol. 49, pp. 95-101.

    Article  Google Scholar 

  15. J.A. Schneider and A.C. Nunes: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 777-83.

    Article  Google Scholar 

  16. B.C. Liechty and B.W. Webb: J. Mater. Process. Technol., 2008, vol. 208, pp. 431-43.

    Article  Google Scholar 

  17. W.L. Zhang, J.X. Wang, F. Yang, Z.Q. Sun, and M.Y. Gu: J. Compos. Mater., 2006, vol. 40, pp. 1117-31.

    Article  Google Scholar 

  18. A. Yazdipour, A.M. Shafiei, and K. Dehghani: Mater. Sci. Eng. A, 2009, vol. 527, pp. 192-97.

    Article  Google Scholar 

  19. Y.F. Sun and H. Fujii: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5740-45.

    Google Scholar 

  20. V.C. Nardone and K.M. Prewo: Scripta Metall., 1986, vol. 20, pp. 43-48.

    Article  Google Scholar 

  21. A. Zhang and D.L. Chen: Scripta Mater., 2006, vol. 54, pp. 1321-26.

    Article  Google Scholar 

  22. K.V. Jata and S.L. Semiatin: Scripta Mater., 2000, vol. 43, pp. 743-49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Heydarian.

Additional information

Manuscript submitted April 19, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heydarian, A., Dehghani, K. & Slamkish, T. Optimizing Powder Distribution in Production of Surface Nano-Composite via Friction Stir Processing. Metall Mater Trans B 45, 821–826 (2014). https://doi.org/10.1007/s11663-014-0025-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0025-z

Keywords

Navigation