Skip to main content
Log in

Removal of Sulfur from CaF2 Containing Desulfurization Slag Exhausted from Secondary Steelmaking Process by Oxidation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The oxidation behavior of sulfur in desulfurization slag generated from the secondary steelmaking process with air has been investigated in the temperature range of 973 K to 1373 K (700 °C to 1100 °C). Although a high removal rate of sulfur is not achieved at temperatures lower than 1273 K (1000 °C) because of the formation of CaSO4, most of the sulfur is rapidly removed from slag as SO2 gas in the 1273 K to 1373 K (700 °C to 1100 °C) range. This finding indicates that the desulfurization slag generated from the secondary steelmaking process can be reused as a desulfurized flux through air oxidation, making it possible to reduce significantly the amount of desulfurization slag for disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.J. Fincham and F.D. Richardson: J. Iron Steel Inst., 1954, vol. 178, pp. 4–15.

    Google Scholar 

  2. Slag Atlas, 2nd ed., VDEh, Verlag Stahleisen GmbH, Dusseldorf, Germany, 1995, pp. 90.

  3. A.K. Chatterjee and G.I. Zhmoidin: J. Mater. Sci., 1972, vol. 7, pp. 93–97.

    Article  CAS  Google Scholar 

  4. A.I. Zaitsev, N.V. Korolyov, and B.M. Mogutnov: J. Mater. Sci., 1991, vol. 26, pp.1588–1600.

    Article  CAS  Google Scholar 

  5. M. Hino, S. Kitagawa, and S. Ban-Ya: ISIJ Int., 1993, vol. 33, pp. 35–41.

    Article  Google Scholar 

  6. M. Ohta, T. Kubo, and K Morita: Tetsu-to-Hagané, 2003, vol. 89, pp. 742–49.

    CAS  Google Scholar 

  7. Japanese Industrial Standards (JIS) K 0058, 2005.

  8. R. Inoue and H. Suito: ISIJ Int., 2002, vol. 42, pp. 785–93.

    Article  CAS  Google Scholar 

  9. A.B. Fox, K.C. Mills, D. Lever, M.C.C. Bezerra, C. Valadares, I. Inamuno, J. J. Laraudogoitia, and J. Gisby: ISIJ Int., 2005, vol. 45, pp. 1051–58.

    Article  CAS  Google Scholar 

  10. T. Nagasaka and K. Yokoyama: Japanese Patent 2010-095793.

  11. K. Kobayashi, T. Hiraki, K. Matsubae, and T. Nagasaka: Int. J. High Temp. Mater. Proc., in press.

  12. Landolt-Börnstein: Thermodynamic Properties of Inorganic Material, Scientific Group Thermodata Europe (SGTE), Springer-Verlag, Berlin-Heidelberg, Germany, 1999.

  13. G. Marbân, M. García-Calzada, and A.B. Fuertes: Chem. Eng. Sci., 1999, vol. 54, pp. 77–90.

    Article  Google Scholar 

  14. D.C. Lynch and J.F. Elliott: Metall. Trans. B, 1980, vol. 11B, pp. 415–25.

    Article  CAS  Google Scholar 

  15. B. García, Y. Yamazaki, and T. Takarada: Fuel, 1999, vol. 78, pp. 883–90.

    Article  Google Scholar 

  16. V.P. Glushko: Thermocenter of the Russian Academy of Sciences, IVTAN Association, Izhorskaya 13/19, 127412 Moscow, Russia, 1994.

  17. I. Barin: Thermochemical Data of Pure Substances, VCH Verlags Gesellschaft, Weinheim, Germany, 1989.

  18. A.D. Pelton, J.B. See, and J.F. Elliott: Metall. Trans., 1974, vol. 5, pp. 1163–71.

    Article  CAS  Google Scholar 

  19. B. Agrawal, G.J. Yurek, and J.F. Elliott: Metall. Trans. B, 1983, vol. 14B, pp. 221–30.

    Article  CAS  Google Scholar 

  20. T. Takahashi, S. Kashiwakura, K. Kanehashi, and T. Nagasaka: Energy Fuels, 2009, vol. 23, pp. 1778–80.

    Article  CAS  Google Scholar 

  21. T. Takahashi, S. Kashiwakura, K. Kanehashi, S. Hayashi, and T. Nagasaka: Env. Sci. Tech., 2011, vol. 45, pp. 890–95.

    Article  CAS  Google Scholar 

  22. S.R. Kelemen, G.N. George, and M.L. Gorbaty: Fuel, 1990, vol. 69, pp. 939–44.

    Article  CAS  Google Scholar 

  23. J. Fukumi, C. Taki, T. Hatanaka, and H. Ogura: Tetsu-to-Hagané, 1990, vol. 76, pp. 1956–63.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Grant-In-Aid for scientific research (The Japan Society for Promotion of Science in 2009-2012, contract Number 21246114) and an ISIJ Research Promotion Grant (The Iron and Steel Institute of Japan in 2009–2010). T.N. deeply appreciates the great guidance, support, and encouragement given by Professor R.J. Fruehan, Professor A.W. Cramb (now Provost of Illinois Institute of Technology), Professor and Mrs. I. Jimbo (now Tokai University, Japan), Dr. Naoki Kikuchi (now JFE Steel, Japan), and Ms. M. Lesko, Center for Iron and Steelmaking Research, Carnegie Mellon University, Pittsburgh, PA. Careful correction of manuscript by Ms. Liz Webeck is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehito Hiraki.

Additional information

Manuscript submitted November 14, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiraki, T., Kobayashi, J., Urushibata, S. et al. Removal of Sulfur from CaF2 Containing Desulfurization Slag Exhausted from Secondary Steelmaking Process by Oxidation. Metall Mater Trans B 43, 703–709 (2012). https://doi.org/10.1007/s11663-012-9685-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9685-8

Keywords

Navigation