Skip to main content
Log in

Flow Control with Local Electromagnetic Braking in Continuous Casting of Steel Slabs

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A computational fluid flow model is applied to investigate the effects of varying submerged entry nozzle (SEN) submergence depth and electromagnetic brake (EMBr) field strength on flow in the mold cavity. The three-dimensional, steady K-ε model of the nozzle and liquid cavity in the mold used the magnetic induction method in FLUENT to incorporate the localized-type static EMBr field measured at a steel plant. The model was validated by comparing results with an analytical solution and with nail board and oscillation mark measurements collected at the plant. Increasing EMBr strength at a constant SEN depth is found to cause a deeper jet impingement, weaker upper recirculation zone and meniscus velocity, and a smaller meniscus wave. Increasing SEN depth without EMBr caused the same trends. Increasing SEN depth at a constant EMBr strength brought about the opposite: higher meniscus velocity, larger meniscus wave, and deeper penetration depth. Using the knowledge gained from this model, electromagnetic forces can be controlled to stabilize the fluid flow in the mold cavity and thereby minimize casting defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. World Steel in Figures, International Iron and Steel Institute, Brussels, Belgium, 2006, www.worldsteel.org

  2. M.M. Wolf: Steelmaking Conf. Proc., Toronto, 1992, ISS, Warrendale, PA, 1992, pp. 83–137

  3. J. Herbertson: 74th Steelmaking Proc. of Iron & Steel Society, Washington, DC, 1991

  4. K. Okazawa, T. Takehito, J. Fukuda, T. Kawase, M. Toki: ISIJ Int., 2001, vol. 41 (8), pp. 851–58

    Article  CAS  Google Scholar 

  5. H.R. Hackl, A.F. Lehman, J.E.A. Eriksson, and S.G. Kollberg: AISTech Preliminary Program, AIST, Warrendale, PA, 2006

  6. J. Nakashima, J.A. Kiyose, Y. Ohtani, J. Fukuda, T. Kawase, and M. Doki: Nippon Steel Technical Report No. 86, Nippon Steel, 2002, No. 86, pp. 61–67

  7. T. Ishii, S.S. Sazhin, M. Makhlouf: Iron Steelmaking, 1996, vol. 23 (3), pp. 267–72

    CAS  Google Scholar 

  8. J. Kubota, K. Okimoto, A. Shirayama, and H. Murakami: 74th Steelmaking Conf. Proc., ISS-AIME, Warrendale, PA, 1991, pp. 233–38

  9. P.H. Dauby, S. Kunstreich: Ironmaking and Steelmaking, 2005, vol. 32 (1), pp. 80–86

    Article  Google Scholar 

  10. P.M. Lofgren, P. Hanley: AISTech Conf. Proc., 2004, vol. 2, pp. 977–84

    Google Scholar 

  11. M.Y. Ha, H.G. Lee, and S.H. Seong: J. Mater. Process. Technol., 2003, vol. 133 (3), pp. 322–39

    Article  CAS  Google Scholar 

  12. K. Takatani, K. Nakai, N. Kasai, T. Watanabe, H. Nakajima: ISIJ Int., 1989, vol. 29 (12), pp. 1063–68

    Article  Google Scholar 

  13. D.S. Kim, W.S. Kim, K.H. Cho: ISIJ Int., 2000, vol. 40 (7), pp. 670–76

    Article  CAS  Google Scholar 

  14. H. Harada, T. Toh, T. Ishii, K. Kaneko, E. Takeuchi: ISIJ Int., 2001, vol. 41 (10), pp. 1236–44

    Article  CAS  Google Scholar 

  15. M. Zeze, H. Harada, E. Takeuchi, and T. Ishii: 76th Steelmaking Conf., Dallas, TX, Mar. 1993, pp. 267–72

  16. A. Idogawa, M. Sugizawa, S. Takeuchi, K. Sorimachi, T. Fujii: Mater. Sci. Eng. A, 1993, vol. A173 (1–2), pp. 293–97

    Google Scholar 

  17. B. Li, T. Okane, T. Umeda: Metall. Trans. B, 2000, vol. 31B, pp. 1491–1503

    CAS  Google Scholar 

  18. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, M.B. Assar: ISIJ Int., 2001, vol. 41 (10), pp. 1266–76

    Google Scholar 

  19. Q. Yuan, B. Zhao, S.P. Vanka, B.G. Thomas: Steel Res. Int., 2005, vol. 76 (1,Special Issue: Simulation of Fluid Flow in Metallurgy), pp. 33–43

    CAS  Google Scholar 

  20. Q. Yuan, S. Sivaramakrishnan, S.P. Vanka, B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–82

    Article  CAS  Google Scholar 

  21. B.E. Launder, D.B. Spalding: Mathematical Models of Turbulence, Academic Press, London, 1972, pp. 90–111

    Google Scholar 

  22. FLUENT6 .2-Manual, Fluent, Inc., Lebanon, NH, 2005

  23. D.E. Hershey, B.G. Thomas, F.M. Najjar: Int. J. Numer. Methods Fluids, 1993, vol. 17 (1), pp. 23–47

    Article  CAS  Google Scholar 

  24. Y. Meng, B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–705

    Article  CAS  Google Scholar 

  25. B.T. Rietow: Master’s Thesis, University of Illinois at Urbana–Champaign, Urbana, IL, 2007

  26. H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67

    Article  CAS  Google Scholar 

  27. Integrity Design and Research Corporation, http://www.gaussmeter.info/dc-gauss.html

  28. R. McDavid, B.G. Thomas: Metall. Trans. B, 1996, vol. 27B, pp. 672–85

    CAS  Google Scholar 

  29. E. Takeuchi, J.K. Brimacombe: Metall. Trans. B, 1984, vol. 15B, pp. 493–509

    Article  CAS  Google Scholar 

  30. R. Moreau: Magnetohydrodynamics, Kluwer Academic Pub. Co, Norwell, MA, 1990, pp. 110–64

    Google Scholar 

  31. M.J. Cho, I.C. Kim, S.J. Kim, J.K. Kim: Trans. KSME, 1999, vol. 23B (13), pp. 1491–1502

    Google Scholar 

  32. K. Rackers and B.G. Thomas: 78th Steelmaking Conf. Proc., Nashville, TN, Apr. 2, 1995, ISS, Warrendale, PA, vol. 78, pp. 723–34

  33. D.T. Creech: Master’s Thesis, University of Illinois at Urbana–Champaign, Urbana, IL, 1999

Download references

Acknowledgments

The authors thank Ron O’Malley and Nucor Steel (Decatur, AL) for their assistance and use of their facilities for the experimental portion of this work. They also thank the Continuous Casting Consortium, University of Illinois at Urbana–Champaign, and the National Science Foundation (Grant No. DMI 05-00453) for support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Manuscript submitted September 13, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cukierski, K., Thomas, B.G. Flow Control with Local Electromagnetic Braking in Continuous Casting of Steel Slabs. Metall Mater Trans B 39, 94–107 (2008). https://doi.org/10.1007/s11663-007-9109-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-007-9109-3

Keywords

Navigation