Skip to main content
Log in

Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Complex silico-ferrites of calcium and aluminium (low-Fe form, denoted as SFCA; and high-Fe, low-Si form, denoted as SFCA-I) constitute up to 50 vol pct of the mineral composition of fluxed iron ore sinter. The reaction sequences involved in the formation of these two phases have been determined using an in-situ X-ray diffraction (XRD) technique. Experiments were carried out under partial vacuum over the temperature range of T=22 °C to 1215 °C (alumina-free compositions) and T=22 °C to 1260 °C (compositions containing 1 and 5 wt pct Al2O3) using synthetic mixtures of hematite (Fe2O3), calcite (CaCO3), quartz (SiO2), and gibbsite (Al(OH)3). The formation of SFCA and SFCA-I is dominated by solid-state reactions, mainly in the system CaO-Fe2O3. Initially, hematite reacts with lime (CaO) at low temperatures (T ∼ 750 °C to 780 °C) to form the calcium ferrite phase 2CaO·Fe2O3 (C2F). The C2F phase then reacts with hematite to produce CaO·Fe2O3 (CF). The breakdown temperature of C2F to produce the higher-Fe2O3 CF ferrite increases proportionately with the amount of alumina in the bulk sample. Quartz does not react with CaO and hematite, remaining essentially inert until SFCA and SFCA-I began to form at around T=1050 °C. In contrast to previous studies of SFCA formation, the current results show that both SFCA types form initially via a low-temperature solid-state reaction mechanism. The presence of alumina increases the stability range of both SFCA phase types, lowering the temperature at which they begin to form. Crystallization proceeds more rapidly after the calcium ferrites have melted at temperatures close to T=1200 °C and is also faster in the higher-alumina-containing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sasaki and Y. Hida: Tetsu-to-Hagané, 1982, vol. 68, pp. 563–71 (in Japanese).

    CAS  Google Scholar 

  2. K. Kitamura, F. Shigemori, Y. Hatakeyama, T. Kawaguchi, and K. Takata: AIME Ironmaking Proc., 1985, vol. 44, pp. 405–14.

    CAS  Google Scholar 

  3. N.J. Bristow and A.G. Waters: Trans. Inst. Min. Metall. (Sect. C: Mineral Processing Extr. Metall.), 1991, vol. 100, pp. C1-C10.

    Google Scholar 

  4. I. Shigaki, M. Sawada, and N. Gennai: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 503–11.

    CAS  Google Scholar 

  5. C.E. Loo, K.T. Wan, and V.R. Howes: Ironmaking and Steelmaking, 1988, vol. 15, pp. 279–85.

    Google Scholar 

  6. W.G. Mumme, J.M.F. Clout, and R.W. Gable: Neues Jahrbuch Miner. Abh, 1988, vol. 173, pp. 93–117.

    Google Scholar 

  7. SN. Ahsan, T. Mukherjee, and J.A. Whiteman: Ironmaking and Steelmaking, 1983, vol. 10, pp. 54–64.

    CAS  Google Scholar 

  8. P.R. Dawson, J. Ostwald, and K.M. Hayes: Trans. Inst. Min. Metall. (Sect. C: Mineral Processing Extr. Metall.), 1985, vol. 94, pp. C71-C78.

    Google Scholar 

  9. P.R. Dawson, J. Ostwald, and K.M. Hayes: BHP Tech. Bull., 1983, vol. 27, pp. 47–51.

    CAS  Google Scholar 

  10. T. Mukherjee and J.A. Whiteman: Ironmaking and Steelmaking 1985, vol. 12, pp. 151–56.

    CAS  Google Scholar 

  11. M.I. Pownceby and J.M.F. Clout: Trans. Inst. Min. Metall. (Sect. C: Mineral Processing Extr. Metall.), 2003, vol. 112, pp. C44-C51.

    Article  CAS  Google Scholar 

  12. P.R. Dawson, J. Ostwald, and K.M. Hayes: Proc. Aus. Inst. Min. Metall., 1984, vol. 289, pp. 163–69.

    CAS  Google Scholar 

  13. Y. Hida, J. Okazaki, K. Itoh, and M. Sasaki: Tetsu-to-Hagané, 1987a, vol. 73, pp. 91–98 (in Japanese).

    Google Scholar 

  14. Y. Hida, M. Sasaki, K. Sato, M. Kagawa, M. Takeshi, H. Soma, H. Naito, and M. Taniguchi: Nippon Steel Tech. Rep., 1987b, vol. 35, pp. 59–67.

    Google Scholar 

  15. Y. Hida, T. Inazumi, K. Sato, and M. Sugata: Proc. 5th China-Japan Symp. on Science and Technology of Iron and Steel. International Academic Publishers, Beijing, 1989, pp. 96–107.

    Google Scholar 

  16. F. Matsuno: Trans. Iron Steel Inst. Jpn., 1979, vol. 19, pp. 595–604.

    CAS  Google Scholar 

  17. F. Matsuno and T. Harada: Trans. Iron Steel Inst. Jpn., 1981, vol. 21, pp. 318–325.

    Google Scholar 

  18. W.G. Mumme: Neues Jahrbuch Miner. Abh., 2003, vol. 178, pp. 307–335.

    Article  ADS  CAS  Google Scholar 

  19. J.D.G. Hamilton, B.F. Hoskins, W.G. Mumme, W.E. Borbidge, and M.A. Montague: Neues Jahrbuch Miner. Abh., 1989, vol. 161, pp. 1–26.

    CAS  Google Scholar 

  20. Bruker AXS: TOPAS V2.1: General Profile and Structure Analysis Software for Powder Diffraction Data, Bruker AXS, Karlsruhe, Germany, 2003.

    Google Scholar 

  21. T.R.C. Patrick and M.I. Pownceby: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 79–89.

    Article  CAS  Google Scholar 

  22. B. Phillips and A. Muan: J. Am. Ceram. Soc., 1959, vol. 42, pp. 413–23.

    Article  CAS  Google Scholar 

  23. M.I. Pownceby and T.R.C. Patrick: Eur. J. Mineralogy, 2000, vol. 12, pp. 455–68.

    CAS  Google Scholar 

  24. L.-H. Hsieh and J.A. Whiteman: Trans. Iron Steel Inst. Jpn., 1989a, vol. 29, pp. 24–32.

    CAS  Google Scholar 

  25. L.-H. Hsieh and J.A. Whiteman: Trans. Iron Steel Inst. Jpn., 1989b, vol. 29, pp. 625–34.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarlett, N.V.Y., Pownceby, M.I., Madsen, I.C. et al. Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter. Metall Mater Trans B 35, 929–936 (2004). https://doi.org/10.1007/s11663-004-0087-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0087-4

Keywords

Navigation