Skip to main content
Log in

Microstructure Optimization of Dual-Phase Steels Using a Representative Volume Element and a Response Surface Method: Parametric Study

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dual-phase (DP) steels have received widespread attention for their low density and high strength. This low density is of value to the automotive industry for the weight reduction it offers and the attendant fuel savings and emission reductions. Recent studies on developing DP steels showed that the combination of strength/ductility could be significantly improved when changing the volume fraction and grain size of phases in the microstructure depending on microstructure properties. Consequently, DP steel manufacturers are interested in predicting microstructure properties and in optimizing microstructure design. In this work, a microstructure-based approach using representative volume elements (RVEs) was developed. The approach examined the flow behavior of DP steels using virtual tension tests with an RVE to identify specific mechanical properties. Microstructures with varied martensite and ferrite grain sizes, martensite volume fractions, carbon content, and morphologies were studied in 3D RVE approaches. The effect of these microstructure parameters on a combination of strength/ductility of DP steels was examined numerically using the finite element method by implementing a dislocation density-based elastic-plastic constitutive model, and a Response surface methodology to determine the optimum conditions for a required combination of strength/ductility. The results from the numerical simulations are compared with experimental results found in the literature. The developed methodology proves to be a powerful tool for studying the effect and interaction of key microstructural parameters on strength and ductility and thus can be used to identify optimum microstructural conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. J. Galan, L. Samek, P. Verleysen, K. Verbeken, and Y. Houbaert, Rev. Metal., 2008, vol. 48, pp. 118–131.

    Article  Google Scholar 

  2. M. Y. Demeri, Advanced High-Strength Steels: Science, Technology, and Applications, 1st ed., ASM International, Materials Park, Oh:, 2013, pp. 105-120.

    Google Scholar 

  3. A. Haldar, S. Suwas, and D. Bhattacharjee: Proceedings of the International Conference on Microstructure and Texture in Steels, Springer-Verlag London Ltd., Guildford, Surrey, 2009, pp. 484–86.

  4. V. H. Baltazar Hernandez, S. S. Nayak, and Y. Zhou: Metall. Mater. Trans., 2011, vol. 42, pp. 3115–3129.

    Article  Google Scholar 

  5. S. S. Hansen, J. Appl. Metalwork, 1982, vol.2, pp.107-118.

    Article  Google Scholar 

  6. Z. Jiang, Z. Guan, and J. Lian, Mater. Sci. Eng. A, 1995, vol 190, pp. 55-64.

    Article  Google Scholar 

  7. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Comput. Mater. Sci., 2012, vol. 52, pp. 46–54.

    Article  Google Scholar 

  8. N. K. Balliger and T. Gladman, Met. Sci., 1981, vol. 15, pp. 95–108.

    Article  Google Scholar 

  9. X. Sun, K. S. Choi, W. N. Liu, and M. A. Khaleel, Int. J. Plast., 2009, vol. 25, pp. 1888–1909.

    Article  Google Scholar 

  10. J. Samei, D. E. Green, S. Golovashchenko, and A. Hassannejadasl, J. Mater. Eng. Perform., 2013, vol. 22, pp. 2080–2088.

    Article  Google Scholar 

  11. J. Samei, D. E. Green, and S. Golovashchenko, J. Manuf. Sci. Eng., 2014, vol. 136, pp. 1-6.

    Google Scholar 

  12. N. D. Beynon, S. Oliver, T. B. Jones, and G. Fourlaris, Mater. Sci. Technol., 2005, vol. 21, pp. 771–778.

    Article  Google Scholar 

  13. A. M. Sherman and R. G. Davies, Int. J. Fatigue, 1981, vol. 3, pp. 195–198.

    Article  Google Scholar 

  14. D. L. Bourell and A. Rizk, Acta Metall., 1983, vol. 31, pp. 609–617.

    Article  Google Scholar 

  15. M. Azuma, S. Goutianos, N. Hansen, G. Winther, and X. Huang, Mater. Sci. Technol., 2012, vol. 28, pp. 1092–1100.

    Article  Google Scholar 

  16. S. Sodjit and V. Uthaisangsuk, Mater. Des., 2012, vol. 41, pp. 370–379.

    Article  Google Scholar 

  17. M. Amirmaleki, J. Samei, D. E. Green, I. van Riemsdijk, and L. Stewart, Mech. Mater., 2016, vol. 101, pp. 27–39.

    Article  Google Scholar 

  18. F. M. Al-Abbasi and J. A. Nemes, Int. J. Mech. Sci., 2003, vol. 45, pp. 1449–1465.

    Article  Google Scholar 

  19. S. A. Asgari, P. D. Hodgson, C. Yang, and B. F. Rolfe, Comput. Mater. Sci., 2009, vol. 45, pp. 860–866.

    Article  Google Scholar 

  20. A. S. Khan, M. Baig, S.-H. Choi, H.-S. Yang, and X. Sun, Int. J. Plast., 2012, vol. 30, pp. 1–17.

    Google Scholar 

  21. S. Nemat-Nasser, Mech. Mater., 1999, vol. 31, pp. 493–523.

    Article  Google Scholar 

  22. A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, Mater. Sci. Eng. A, 2013, vol. 560, pp. 129–139.

    Article  Google Scholar 

  23. V. Uthaisangsuk, U. Prahl, and W. Bleck, Eng. Fract. Mech., 2011, vol. 78, pp. 469–486.

    Article  Google Scholar 

  24. N. H. Abid, R. K. Abu Al-Rub, and A. N. Palazotto, Int. J. Solids Struct.,2017, Vol. 104–105, pp.8-24.

    Article  Google Scholar 

  25. M. J. Deepu, H. Farivar, U. Prahl, and G. Phanikumar, IOP Conf. Ser. Mater. Sci. Eng., 2017, Vol. 192, pp. 1.

    Google Scholar 

  26. D. Gerbig, A. Srivastava, S. Osovski, L. G. Hector, and A. Bower, Int. J. Fract., 2017, vol 207, pp. 1-24.

    Article  Google Scholar 

  27. A. C. Lewis and A. B. Geltmacher, Scr. Mater., 2006, vol. 55, pp. 81–85.

    Article  Google Scholar 

  28. D. Brands, J. Schröder, D. Balzani, O. Dmitrieva, and D. Raabe, Appl. Math. Mech, 2011, vol. 11, pp. 503–504.

    Google Scholar 

  29. C. Douglas: Montgomery: Design and Analysis of Experiments, 7th ed., Wiley, Hoboken, NJ, 2008, pp. 478–545.

  30. M. Delincé, Y. Bréchet, J. D. Embury, M. G. D. Geers, P. J. Jacques, and T. Pardoen, Acta Mater., 2007, vol. 55, pp. 2337–2350.

    Article  Google Scholar 

  31. M. Jafari, S. Ziaei-Rad, and N. Torabian, Metallogr. Microstruct. Anal., 2014, vol. 3, pp. 185–193.

    Article  Google Scholar 

  32. S. Krajewski and J. Nowacki, Arch. Civ. Mech. Eng., 2014, vol. 14, pp. 278–286.

    Article  Google Scholar 

  33. S. K. Paul, Mater. Des., 2013, vol. 44, pp. 397–406.

    Article  Google Scholar 

  34. S. K. Paul, Mater. Des., 2013, vol. 50, pp. 782–789.

    Article  Google Scholar 

  35. C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, Annu. Rev. Mater. Res., 2014, vol. 45, pp. 391-431.

    Article  Google Scholar 

  36. D. Brands, D. Balzani, L. Scheunemann, J. Schröder, H. Richter, and D. Raabe, Arch. Appl. Mech., 2016, vol. 86, pp. 575–598.

    Article  Google Scholar 

  37. S.K. Paul: Model. Simul. Mater. Sci. Eng., 2013, vol. 21, pp. 55001(1–26).

  38. T. Mori and K. Tanaka, Acta Metall., 1973, vol. 21, pp. 571–574.

    Article  Google Scholar 

  39. R. M. Rodriguez and I. Gutiérrez, Mater. Sci. Forum, 2003, vol. 426–432, pp. 4525–4530.

    Article  Google Scholar 

  40. S. K. Paul and A. Kumar, Comput. Mater. Sci., 2012, vol. 63, pp. 66–74.

    Article  Google Scholar 

  41. A. Ramazani, P. T. Pinard, S. Richter, A. Schwedt, and U. Prahl, Comput. Mater. Sci., 2013, vol. 80, pp. 134–141.

    Article  Google Scholar 

  42. A. Ramazani, K. Mukherjee, A. Abdurakhmanov, U. Prahl, M. Schleser, U. Reisgen, and W. Bleck, Mater. Sci. Eng. A, 2014, vol. 589, pp. 1–14.

    Article  Google Scholar 

  43. S. Sodjit and V. Uthaisangsuk, J. Met. Mater., 2012, vol. 22, pp. 87–97.

    Google Scholar 

  44. C. Thomser, V. Uthaisangsuk, and W. Bleck, Steel Res. Iner., 2009, vol. 80, pp. 582–587.

    Google Scholar 

  45. A. P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, and L. Brassart, Acta Mater., 2014, vol. 73, pp. 298–311.

    Article  Google Scholar 

  46. G.I., Metalurgija, 2012, vol. 11, pp. 201–14.

  47. H. Öktem, T. Erzurumlu, and H. Kurtaran, J. Mater. Process. Technol., 2005, vol. 170, pp. 11–16.

    Article  Google Scholar 

  48. M. Calcagnotto, D. Ponge, and D. Raabe, Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832–7840.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Libyan Ministry of Higher Education and Scientific Research and Mrs. Cassandra Radigan, Educational Program Manager at MSC Software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Belgasam.

Additional information

Manuscript submitted March 23, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belgasam, T.M., Zbib, H.M. Microstructure Optimization of Dual-Phase Steels Using a Representative Volume Element and a Response Surface Method: Parametric Study. Metall Mater Trans A 48, 6153–6177 (2017). https://doi.org/10.1007/s11661-017-4351-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4351-z

Navigation