Skip to main content
Log in

Phase-Field Simulation of Microstructure Evolution in Industrial A2214 Alloy During Solidification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

By linking to the thermodynamic and atomic mobility databases in Al alloys well established in our research group, the microstructure evolution in industrial A2214 alloy (Al-4.5Cu-0.5Mg-1.0Si, in wt pct) during solidification process was studied by means of two-dimensional phase-field simulation via MICRostructure Evolution Simulation Software in the framework of the multi-phase-field formalism. The thermophysical parameters including interfacial energies and interfacial mobilities were carefully chosen for reproducing the experimental features. The solidification sequence due to the present phase-field simulation conforms to both equilibrium calculation and Scheil simulation. The predicted microstructure reproduces the experimental data very well. These facts indicate that a quantitative phase-field simulation was achieved in the present work. Moreover, the mechanisms of characteristic patterns and microstructure formation were revealed with the aid of the phase-field simulation. In addition, the effect of cooling rate on the secondary dendrite arm spacing and microsegregation was also investigated through comprehensive comparison with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood and P. De Smet: Mater. Sci. Eng. A, 2000, vol. 280, pp. 37-49.

    Article  Google Scholar 

  2. L. Wang, M. Makhlouf and D. Apelian: Int. J. Mater. Rev., 1995, vol. 40, pp. 221-238.

    Article  Google Scholar 

  3. A.L. Dons, G. Heiberg, J. Voje, J.S. Maeland, J.O. Loland and A. Prestmo: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 561-566.

    Article  Google Scholar 

  4. C.R. Hutchinson and S.P. Ringer: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2721-2733.

    Article  Google Scholar 

  5. M. Nakai and T. Eto: Mater: Sci. Eng. A, 2000, vol. 285, pp. 62-68.

    Article  Google Scholar 

  6. A. Karma and W.J. Rappel: Phys. Rev. E, 1998, vol. 57, pp. 4323-4349.

    Article  Google Scholar 

  7. M. Rappaz and M. Rettenmayr: Curr. Opin. Solid State Mater. Sci., 1998, vol. 3, pp. 275-282.

    Article  Google Scholar 

  8. M. Rettenmayr and H.E. Exner: Welding and Advanced Solidification Processes-VIII, 1998, pp. 171–78.

  9. W.J. Boettinger, J.A. Warren, C. Beckermann and A. Karma: Annu. Rev. Mater. Res., 2002, vol. 32, pp. 163-94.

    Article  Google Scholar 

  10. M. Plapp: J. Cryst. Growth, 2007, vol. 303, pp. 49-57.

    Article  Google Scholar 

  11. I. Steinbach: JOM, 2013, vol. 65, pp. 1096-1102.

    Article  Google Scholar 

  12. I. Steinbach, F. Pezzolla, B. Nestler and M. SeeBelberg: Physica, 1996, vol. 94D, pp. 135-147.

    Google Scholar 

  13. MICRESS@: The MICRostructure Evolution Simulation Software. http://www.micress.de. Accessed 15 April 2015.

  14. Thermo Calc Software: http://www.thermocalc.com. Accessed 15 April 2015.

  15. X. Yan, S. Chen, F. Xie and Y.A. Chang: Acta Mater., 2002, vol. 50, pp. 2199-2207.

    Article  Google Scholar 

  16. I. Steinbach: Model. Simul. Mater. Sci. Eng., 2009, vol. 17,pp. 073001.

    Article  Google Scholar 

  17. J. Eiken, B. Bottger and I. Steinbach: Phys. Rev. E, 2006, vol. 73, pp. 066122.

    Article  Google Scholar 

  18. R.F. Almgren: J. Appl. Math, 1999, vol. 59, pp. 2086-2107.

    Google Scholar 

  19. A. Karma, W.-J.Rappel: Phys. Rev. E, 1996, vol. 53, pp. R3017-R3020.

    Article  Google Scholar 

  20. A.M. Mullis, J. Rosama and P.K. Jimack: J. Cryst. Growth, 2010, vol. 312, pp. 1891-1897.

    Article  Google Scholar 

  21. A. Karma: Phys. Rev. Lett., 2001, vol. 87, pp. 115701.

    Article  Google Scholar 

  22. S.G. Kim: Acta Mater., 2007, vol. 55, pp. 4391-4399.

    Article  Google Scholar 

  23. A. Gopinath, R.C. Armstrong and R.A. Brown: J. Cryst. Growth, 2006, vol. 291, pp. 272-289.

    Article  Google Scholar 

  24. M. Ohno and K. Matsuura: Phys. Rev. E, 2009, vol. 79, pp. 031603.

    Article  Google Scholar 

  25. S.Y. Pan and M.F. Zhu: IOP Conf. Ser.: Mater. Sci. Eng., 2012, vol.33, pp. 012096.

    Article  Google Scholar 

  26. A. Carre, B. Bottger and A. Apel: J. Cryst. Growth, 2013, vol. 380, pp. 5-13.

    Article  Google Scholar 

  27. G. Boussinot and E.A. Brener: Phys. Rev. E, 2013, vol. 88, pp. 022406.

    Article  Google Scholar 

  28. A. Fang and Y. Mi: Phys. Rev. E, 2013, vol. 87, pp. 012402.

    Article  Google Scholar 

  29. Y. Du, S. Liu, L. Zhang, H. Xu, D. Zhao and A. Wang: CALPHAD, 2011, vol. 35, pp. 427-445.

    Article  Google Scholar 

  30. O. Tougait and H. Noël: Intermetallics, 2004, vol. 12, pp.219-223.

    Article  Google Scholar 

  31. A.J. Bradley and P. Jones: J. Inst. Met., 1933, vol. 625, pp. 131-162.

    Google Scholar 

  32. M.E. Straumanis and E.Z. Aka: J. Appl. Phys., 1952, vol. 23, pp. 330-334.

    Article  Google Scholar 

  33. D.J. Chakrabarti and D.E. Laughlin: Prog. Mater. Sci., 2004, vol. 49, pp. 389-410.

    Article  Google Scholar 

  34. L. Arnberg and B. Aurivillius: Acta Chem. Scand. A, 1980, vol. 34, pp. 1-5.

    Article  Google Scholar 

  35. J. Lacaze, G. Lesoult, O. Relave, I. Ansara and J.P. Riquet: Z. Metallkd, 1987, vol. 78, pp. 141-150.

    Google Scholar 

  36. D.A. Petrov: Zh. Fiz. Khim., 1937, vol. 9, pp. 522-527.

    Google Scholar 

  37. D.A. Petrov: Acta Phys. Chim. URSS, 1937, vol. 6, pp. 505-512.

    Google Scholar 

  38. R. Yassar, D. Field and H. Weiland: Scr. Mater., 2005, vol. 53, pp. 299-303.

    Article  Google Scholar 

  39. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworths, Boston, 1976.

    Google Scholar 

  40. G. Phragmen: J. Inst. Met., 1950, vol. 77, pp. 489-552.

    Google Scholar 

  41. R. Li, R. Li, Y. Zhao, L. He, C. Li, H. Guan and Z. Hu: Mater. Lett., 2004, vol. 58, pp. 2096-2101.

    Article  Google Scholar 

  42. C. Wolverton: Acta Mater., 2001, vol. 49, pp. 3129–3142.

    Article  Google Scholar 

  43. K. Chang, S. Liu, D. Zhao, Y. Du, L. Zhou and L. Chen: Therm. Acta, 2011, vol. 512, pp. 258-267.

    Article  Google Scholar 

  44. Y. Du, L. Zhang, S. Cui, D. Zhao, D. Liu, W. Zhan, W. Sun and W. Jie: Sci China Tech. Sci., 2012, vol. 55, pp. 306-327.

    Article  Google Scholar 

  45. L. Zhang, Y. Du, I. Steinbach, Q. Chen and B. Huang: Acta Mater., 2010, vol. 58, pp.3664-3675.

    Article  Google Scholar 

  46. L. Zhang, D. Liu, W. Zhang, S. Wang, Y. Tang, N. Ta, M. Wei and Y. Du: Mater. Sci. Forum, 2014, vol. 794-796, pp. 611-616.

    Article  Google Scholar 

  47. M. Gunduz and J.D. Hunt: Acta Mater., 1985, vol. 33, pp. 1651-1672.

    Article  Google Scholar 

  48. N. Marasli and J.D. Hunt: Acta Mater., 1996, vol. 44, pp. 1085-1096.

    Article  Google Scholar 

  49. H. Dai: Doctoral Dissertation of Shandong University, China, 2009.

  50. J.D. Hunt: Solidification and casting of metals. London, The Metal Society, 1979.

    Google Scholar 

  51. W. Kurz and D.J. Fisher: Acta Mater., 1981, vol. 29, pp. 11-20.

    Article  Google Scholar 

  52. M. Ganesan, D. Dye, and P.D. Lee: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2191-2204.

    Article  Google Scholar 

  53. J. Lacaze, J Eiken and A. Hazotte: IOP Conf. Series: Materials Science and Engineering, 2012, vol. 33, pp. 1-8.

    Article  Google Scholar 

  54. K. Graetz, J. Eiken and R. Schmid-Fetzer: Int. J. Mater. Res., 2014, vol. 105, pp. 130-138.

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports from the National Natural Science Foundation of China (Grant No. 51474239), National Natural Science Foundation for Youth of China (Grant No. 51301208), National Basic Research Program of China (Grant Nos. 2011CB610401, 2014CB644002), and Sino-German Center for Promotion of Science (Grant No. GZ755) are acknowledged. Ying Tang acknowledges support from Hunan Provincial Innovation Foundation for Postgraduate. Lijun Zhang acknowledges support from Shenghua Scholar Program of Central South University, Changsha, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang.

Additional information

Manuscript submitted January 20, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Tang, Y., Zhang, L. et al. Phase-Field Simulation of Microstructure Evolution in Industrial A2214 Alloy During Solidification. Metall Mater Trans A 46, 3182–3191 (2015). https://doi.org/10.1007/s11661-015-2911-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2911-7

Keywords

Navigation