Skip to main content
Log in

The Effect of Alkali Concentration on the Structural and Magnetic Properties of Mn-Ferrite Nanoparticles Prepared via the Coprecipitation Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

MnFe2O4 nanoparticles were synthesized using the coprecipitation method under two different NaOH concentration settings as reaction agents at 355 K (82 °C). Structural and morphological properties of the nanoparticles were examined using X-ray diffraction and a scanning electron microscope. The decrease of NaOH concentration led to the increase of particle size. This result contradicts two recently published reports. Also, the decrease of NaOH concentration led to more crystallinity and a narrower particle size distribution. The results were evaluated from a chemical point of view and were based on the supersaturation level, which was influenced by alkali concentration. It was concluded that the higher NaOH concentration led to a more rapid nucleation and more random cation distribution. The magnetic properties of the nanoparticles examined by permeameter and faraday-balance equipment were consistent with the structural and morphological properties of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Goldman: Modern Ferrite Technology, 2nd ed., Springer-Verlag, New York, NY, 2006, pp. 217–394.

    Google Scholar 

  2. I. Sharifi, H. Shokrollahi, and S. Amiri: J. Magn. Magn. Mater., 2012, vol. 324 (6), pp. 903–15.

    Article  Google Scholar 

  3. M.A. Dar, V. Verma, S.P. Gariola, W.A. Siddiqui, R.K. Singh, and R.K. Kotnala: J. Appl. Surf. Sci., 2012, vol. 258 (14), pp. 5342–47.

    Article  Google Scholar 

  4. C.P. Bergmann and M.J.D. Andrade: Nanostructured Materials for Engineering Applications, Springer, Berlin, 2011, pp. 23–40.

    Book  Google Scholar 

  5. Z. Lou, M. He, R. Wang, W. Qin, D. Zhao, and C. Chen: J. Inorg. Chem., 2014, vol. 53 (4), pp. 2053–57.

    Article  Google Scholar 

  6. M.A. Ahmed, N. Okasha, and S. El-Dek: Nanotechnology, 2008, vol. 19, art. id 065603 (6pp).

  7. S. Bastien and N. Braidy: J. Appl. Phys., 2013, vol. 114, p. 214304

    Article  Google Scholar 

  8. W. Niu, L. Zhang, and G. Xu: J. Nanoscale, 2013, vol. 5, pp. 3172–81.

    Article  Google Scholar 

  9. Y. Yin and D. Talapin: J. Chem. Soc. Rev., 2013, vol. 42, pp. 2484–87.

    Article  Google Scholar 

  10. W. Niu and G. Xu: J. Nano Today, 2011, vol. 6 (3), pp. 265–85.

    Article  Google Scholar 

  11. P.K. Baviskar, P.R. Nikam, S.S. Gagote, A. Ennaoui, and B.R. Sankapat: J. Alloys Compd., 2013, vol. 551, pp. 233–42.

    Article  Google Scholar 

  12. T. Takada and M. Kiyama: Proc. Int. Conf., July 1970, pp. 69–72.

  13. S. Pratapa, L. Susanti, Y.A.S. Insany, Z. Alfiati, B. Hartono, Mashuri, A. Taufiq, A. Fuad, Triwikantoro, M.A. Baqiya, S. Purwaningsih, E. Yahya, and Darminto: AIP Conf. Proc., vol. 1284, 2010, pp. 125–28.

  14. H. Wang, X. Xu, J. Zhang, and C. Li: J. Mater. Sci. Technol., 2010, vol. 26, pp. 1037–40.

    Article  Google Scholar 

  15. A. Yang, C.N. Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, Z. Chen, K. Hsu, Z. Cai, K. Ziemer, C. Vittoria, and V.G. Harris: Nanotechnology, 2009, vol. 20, art. id 185704 (9pp).

  16. W. Ramadan, M. Kareem, B. Hannoyer, and S. Saha: Adv. Mater. Res., 2011, vol. 324, pp. 129–32.

    Article  Google Scholar 

  17. J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, and A. Kostikas: Phys. Rev. B, 1996, vol. 54, pp. 9288–96.

    Article  Google Scholar 

  18. K. Buschow: Concise Encyclopedia of Magnetic and Superconducting Materials, Advances in Materials Sciences and Engineering, 2nd ed., Elsevier, Amsterdam, 2005, pp. 210–15.

    Google Scholar 

  19. R. Buckley and P. Benito: Solid State Chemistry Research Trends, Nova Science, New York, NY, 2007, p. 205-06.

    Google Scholar 

  20. Z.X. Tang, C.M. Sorensen, K.J. Klabunde, and G.C. Hadjipanayis: Phys. Rev. Lett., 1991, vol. 67, pp. 3602–05.

    Article  Google Scholar 

  21. G.U. Kulkarni, K.R. Kannan, T. Arunarkavalli, and C.N.R. Rao: Phys. Rev. B, 1994, vol. 49, pp. 724–27.

    Article  Google Scholar 

  22. Z.X. Tang, C.M. Sorensen, K.J. Klabunde, and G.C. Hadjipanayis: J. Coll. Interface Sci., 1991, vol. 146, pp. 38–52.

    Article  Google Scholar 

  23. V.A.M. Brabers: Phys. Rev. Lett., 1992, vol. 68, p. 3113.

    Article  Google Scholar 

  24. Z.X. Tang, J.P. Chen, C.M. Sorensen, K.J. Klabunde, and G.C. Hadjipanayis: Phys. Rev. Lett., 1992, vol. 68, p. 3114.

    Article  Google Scholar 

  25. E.P. Wohlfarth: Ferromagnetic Materials; A Handbook on the Properties of Magnetically Ordered Substances, North-Holland Physics, Amsterdam, 1982, pp. 191–211.

    Google Scholar 

  26. P.J. Van der Zaag, A. Noordermeer, M.T. Johnson, and P.F. Bongers: Phys. Rev. Lett., 1992, vol. 68, p. 3112.

    Article  Google Scholar 

  27. M. Mouroi, R. Street, P.G. McCormick, and J. Amighian: Phys. Rev. B, 2001, vol. 63, art. id 184414 (7pp).

  28. J. Wang, J. Sun, Q. Sun, and Q. Chen: Mater. Res. Bull., 2003, vol. 38, pp. 1113–18.

    Article  Google Scholar 

  29. R.Y. Hong, T.T. Pan, and H.Z. Li: J. Magn. Magn. Mater., 2006, vol. 303, pp. 60–68.

    Article  Google Scholar 

Download references

Acknowledgment

The author thanks Professor J. Amighian and Dr. M. Mozaffari for their guidance throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Pourbafarani.

Additional information

Manuscript submitted September 7, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourbafarani, S. The Effect of Alkali Concentration on the Structural and Magnetic Properties of Mn-Ferrite Nanoparticles Prepared via the Coprecipitation Method. Metall Mater Trans A 45, 4535–4537 (2014). https://doi.org/10.1007/s11661-014-2360-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2360-8

Keywords

Navigation