Skip to main content

Advertisement

Log in

Effects of Microalloying on the Impact Toughness of Ultrahigh-Strength TRIP-Aided Martensitic Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of the addition of Cr, Mo, and/or Ni on the Charpy impact toughness of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel with a lath-martensite structure matrix (i.e., a TRIP-aided martensitic steel or TM steel) were investigated with the aim of using the steel in automotive applications. In addition, the relationship between the toughness of the various alloyed steels and their metallurgical characteristics was determined. When Cr, Cr-Mo, or Cr-Mo-Ni was added to the base steel, the TM steel exhibited a high upper-shelf Charpy impact absorbed value that ranged from 100 to 120 J/cm2 and a low ductile–brittle fracture appearance transition temperature that ranged from 123 K to 143 K (−150 °C to −130 °C), while also exhibiting a tensile strength of about 1.5 GPa. This impact toughness of the alloyed steels was far superior to that of conventional martensitic steel and was caused by the presence of (i) a softened wide lath-martensite matrix, which contained only a small amount of carbide and hence had a lower carbon concentration, (ii) a large amount of finely dispersed martensite-retained austenite complex phase, and (iii) a metastable retained austenite phase of 2 to 4 vol pct in the complex phase, which led to plastic relaxation via strain-induced transformation and played an important role in the suppression of the initiation and propagation of voids and/or cleavage cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V.F. Zackay, E.R. Parker, D. Fahr, and B. Bush: Trans. ASM., 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  2. K. Sugimoto, J. Sakaguchi, T. Iida, and T. Kashima: ISIJ Int., 2000, vol. 40, pp. 920–26.

    Article  CAS  Google Scholar 

  3. T. Hojo, T. Kajiyama, and K. Sugimoto: Proc. Asia Steel Int. Conf. 2009, The Korean Institute of Metals and Materials, Seoul, South Korea, 2009, S7-09.

  4. K. Sugimoto, D. Ina, and J. Kobayashi: Proc. ICAS 2010, Metall. Ind. Press, Beijing, 2010, CD-R.

  5. K. Sugimoto, M. Murata, and S. Song: ISIJ Int., 2010, vol. 50, pp. 162–68.

    Article  CAS  Google Scholar 

  6. D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 397–408.

    Article  CAS  Google Scholar 

  7. A. Grajcar, R. Kuziak, and W. Zalecki: Arch. Civ. Mec. Eng., 2012, vol.12, pp. 334–341.

    Article  Google Scholar 

  8. H. Aydin, E. Essadiqi, I. Jung, and S. Yue: Mater. Sci. Eng. A, 2013, vol.564, pp. 501–08.

    Article  CAS  Google Scholar 

  9. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Solid State Mat. Sci., 2004, vol. 8, pp. 219–37.

    Article  CAS  Google Scholar 

  10. N. Zhong, X.D. Wang, L. Wang, and Y.H. Rong: Mater. Sci. Eng. A, 2009, vol. 509, pp. 111–16.

    Article  Google Scholar 

  11. X.D. Wang, N. Zhong, Y.H. Rong, T.Y. Hsu, Z.Y. Xu, and L. Wang: J. Mater. Res., 2009, vol. 24, pp. 260–67.

    Article  CAS  Google Scholar 

  12. K. Sugimoto and J. Kobayashi: Proc. MS&T 2010, TMS, Warrendale, PA, 2010, pp. 1639–49.

  13. J. Kobayashi, D.V. Pham, and K. Sugimoto: Steel Res. Int., 2011, Special Edition: ICTP2011, pp. 598–603.

  14. M.A. Grossman: Trans. AIME, 1942, vol. 150, pp. 227–59.

    Google Scholar 

  15. J.H. Hollomon and L. D. Jaffe: Trans. AIME, 1946, vol. 167, pp. 601–16.

    Google Scholar 

  16. H. Maruyama: J. Jpn. Soc. Heat Treat., 1977, vol. 17, pp. 198–204.

    CAS  Google Scholar 

  17. D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.

    CAS  Google Scholar 

  18. S. Song, K. Sugimoto, M. Kobayashi, H. Matsubara, and T. Kashima: Tetsu-to-Hagane, 2000, vol. 86, pp. 563–69.

    CAS  Google Scholar 

  19. R.M. Horn and R.O. Ritchie: Metall. Trans. A, 1978, vol. 9A, pp. 1039–53.

    CAS  Google Scholar 

  20. M. Sarikaya, A.K. Jhingan, and G. Thomas: Metall. Trans. A, 1983, vol. 14A, pp. 1121–33.

    CAS  Google Scholar 

  21. G.E. Dieter: Mechanical Metallurgy (SI Metric Edition), McGraw-Hill Book Co., London, U.K., 1988, pp. 262–65.

    Google Scholar 

  22. F.A. McClintock: J. Appl. Mech., 1968, vol. 35, pp. 363–71.

    Article  Google Scholar 

  23. T. Kunitake, F. Terasaki, Y. Ohmori, and H. Ohtani: Toward Improved Ductility and Toughness, Climax Molybdenum Develop. Co., Kyoto, Japan, 1971, pp. 83–100.

    Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the Adaptable and Seamless Technology Transfer Program through Target-driven R&D, the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junya Kobayashi.

Additional information

Manuscript submitted February 27, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, J., Ina, D., Nakajima, Y. et al. Effects of Microalloying on the Impact Toughness of Ultrahigh-Strength TRIP-Aided Martensitic Steels. Metall Mater Trans A 44, 5006–5017 (2013). https://doi.org/10.1007/s11661-013-1882-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1882-9

Keywords

Navigation