Skip to main content
Log in

Physical Simulation of Deformation and Microstructure Evolution During Friction Stir Processing of Ti-6Al-4V Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The feasibility of using high-strain rate (1.475 to 3.942 s−1) hot-torsion testing with a Gleeble® thermomechanical simulator was demonstrated for simulating microstructures consistent with friction stir processing (FSP) of Ti-6Al-4V. The tests were performed on α/β-processed base material at temperatures both above and below the β-transus. Various phenomena including the refinement of α- and β-grains, deformation-induced heating, and deformation instabilities were observed. These tests reproduced the range of microstructures that are observed under FSP processing conditions. The testing methodology can be used for generating constitutive material property equations relevant to computational FSP/friction stir welding models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The data can be obtained in electronic format on e-mail request to lippold.1@osu.edu.

  2. Calculated using ThermoCalc® software.[49]

  3. Microstructure may contain martensite; however, we cannot distinguish with our techniques.

  4. Igor Pro Software; http://www.wavemetrics.com.

References

  1. R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R, 2005, Vol. 50, pp. 1–78.

    Article  Google Scholar 

  2. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: G.B. Patent Application No. 9125978.8, December 1991.

  3. R.S. Mishra and M.W. Mahoney (2007) Friction Stir Welding and Processing, 1st edition, ASM International, Materials Park.

    Google Scholar 

  4. R. Nandan, T. DebRoy, and H. K. D. H. Bhadeshia, Prog. Mater. Sci., 2008, Vol. 53, pp. 980–1023.

    Article  CAS  Google Scholar 

  5. W. M. Thomas and E. D. Nicholas, Materials Design, 1997, Vol. 18, pp. 269–73.

    Article  CAS  Google Scholar 

  6. H. K. D. H. Bhadeshia and T. DebRoy, Sci. Technol. Weld. Join., 2009, Vol. 14, pp. 193–96.

    Article  CAS  Google Scholar 

  7. T. DebRoy and H. K. D. H. Bhadeshia, Sci. Technol. Weld. Join., 2010, Vol. 15, pp. 266–70.

    Article  Google Scholar 

  8. R. Rai, A. De, H. K. D. H. Bhadeshia and T. DebRoy, Sci. Technol. Weld. Join., 2011, Vol. 16, pp. 325–42.

    Article  CAS  Google Scholar 

  9. D. Fairchild, A. Kumar, S. Ford, N. Nissley, R. Ayer, H. Jin, and A. Ozekcin: in Proceedings of 8 th International Conference on Trends in Welding Research, S.A. David, T. DebRoy, J.N. Dupont, T. Koseki, and H.B. Smartt, eds., ASM International, Materials Park, 2009, pp. 371–80.

  10. T. F. A. Santos, T. F. C. Hemenegildo, C. R. M. Afonso, R. R. Marinho, M. T. P. Paes, A. J. Ramirez, Eng. Fract. Mech., 2010, Vol. 77, pp. 2937–45.

    Article  Google Scholar 

  11. B. Thompson and S. S. Babu, Weld. J., 2010, Vol. 89, pp. 256s–61s.

    Google Scholar 

  12. T. G. Santos, P. Vilaca, R. M. Miranda, J. Mater. Process. Technol.., 2011, Vol. 211, pp. 174–80.

    Article  CAS  Google Scholar 

  13. Y. Mashiko, Y. Hatsukade, T. Yasui, H. Takenaka, Y. Todaka, M. Fukumoto, and S. Tanaka Physica C, 2010, Vol. 470, pp. 1524–28.

    Article  CAS  Google Scholar 

  14. R. Nandan, G. G. Roy, T. J. Lienert and T. DebRoy, Acta Mater., 2007, Vol. 55, pp. 883–95.

    Article  CAS  Google Scholar 

  15. P. A. Colegrove and H. R. Shercliff, Sci. Technol. Weld. Join., 2006, Vol. 11, pp. 429–41.

    Article  CAS  Google Scholar 

  16. P. A. Colegrove and H. R. Shercliff, J. Mater. Process. Technol., 2005, Vol. 169, pp. 320–27.

    Article  CAS  Google Scholar 

  17. H. Schmidt and J. Hattel, Model. Simul. Mater. Sci. Process., 2005, Vol. 13, pp. 77–93.

    Article  Google Scholar 

  18. H. Schmidt, J. Hattel, and J. Wert, Model. Simul. Mater. Sci. Process., 2004, Vol. 12, pp. 143–57.

    Article  Google Scholar 

  19. A. Arora, T. DebRoy, and H. K. D. H. Bhadeshia, Acta Mater., 59 (2011) 2020–28.

    Article  CAS  Google Scholar 

  20. S. Xu, X. Deng, A. P. Reynolds, and T. U. Seidel, Sci. Technol. Weld. Join., 6 (2001) 191–93.

    Article  Google Scholar 

  21. P. Ulysse, Int. J. Mach. Tool Manuf., 2002, Vol. 42, pp. 1549–57.

    Article  Google Scholar 

  22. O. Frigaard, O. Grong, and O. T. Midling, Metall. Mater. Trans. A, 2001, Vol. 32, pp. 1189–1200.

    Article  CAS  Google Scholar 

  23. S. G. Lambrakos and R. W. Fonda, Sci. Technol. Weld. Join., 2002, Vol. 7, pp. 177–81.

    Article  Google Scholar 

  24. P. Dong, F. Lu, J. K. Hong, Z. Cao (2001) Sci. Technol. Weld. Join. 6: 281–87.

    Article  CAS  Google Scholar 

  25. J. Luo, J. Luo, M. Li, H. Li, W. Lu, Mater. Sci. Eng. A, 2009, Vol. 505 pp. 88–95.

    Article  Google Scholar 

  26. A. Momeni and S. M. Abbasi, Materials and Design, 2010, Vol. 31, pp. 3599–3604.

    Article  CAS  Google Scholar 

  27. S. M. Abbasi and A. Momeni, Trans. Nonferrous Met. Soc. China, 2011, Vol. 21, pp. 1728–34.

    Article  CAS  Google Scholar 

  28. K. P. Rao, Y. K. D. V. Prasad and E. B. Hawbolt, J. Mater. Process. Technol., 1996, Vol. 56 pp. 897–907.

    Article  Google Scholar 

  29. K. P. Rao, Y. K. D. V. Prasad and E. B. Hawbolt, J. Mater. Process. Technol., 1996, Vol. 56, pp. 908–17.

    Article  Google Scholar 

  30. F. D. Fischer, E. R. Oberaigner and K. Tanaka, Comput. Mater. Sci., 1997, Vol. 9, pp. 56–63.

    Article  Google Scholar 

  31. X. G. Gan and H. Yang, Int. J. Plast., 2011, Vol. 27, pp. 1833–52.

    Article  Google Scholar 

  32. A. Gilat and X. Wu, Int. J. Plast., 1997, Vol. 13, pp. 611–32.

    Article  CAS  Google Scholar 

  33. Y. V. R. K. Prasad, T. Seshacharyulu, S. C. Medeiros, W. G. Frazier, J. T. Morgan, and J. C. Malas, Mater. Sci. Technol., 2000, Vol. 16, pp. 1029–36.

    Article  CAS  Google Scholar 

  34. P. Wanjara, M. Jahazi, H. Moajati and S. Yue, Mater. Sci. Eng. A., 2006, Vol. 416, pp. 300–11.

    Article  Google Scholar 

  35. U. F. Kocks, Mater. Sci. Eng. A., 2001, Vol. 317, pp. 181–87.

    Article  Google Scholar 

  36. F. J. Zerili, Metall. Mater. Trans. A, 2004, Vol. 35A, pp. 2547–55.

    Article  Google Scholar 

  37. D. J. Steinberg, S. G. Cochran and M. W. Guinan, J. Appl. Phys., 1980, Vol. 51, pp. 1498–1504.

    Article  CAS  Google Scholar 

  38. G.R. Johnson and W.H. Cook: Proceedings of the 7 th International Symposium on Ballistics, 1983, pp. 541–47.

  39. H.J. Frost and M.F. Ashby (1982) Deformation Mechanism Maps. Pergamon Press, Oxford.

    Google Scholar 

  40. K. E. Tello, A. P. Gerlich and P. F. Mendez, Sci. Technol. Weld. Join., 2010, Vol. 15, pp. 260–66.

    Article  CAS  Google Scholar 

  41. P. F. Mendez, K. E. Tello, T. J. Lienert, Acta Mater., 2010, Vol. 58, pp. 6012–26.

    Article  CAS  Google Scholar 

  42. S. H. Zahiri, C. H. J. Davies, and P. D. Hodgson, Scripta Mater., 2005, Vol. 52, pp. 299–304.

    Article  CAS  Google Scholar 

  43. A. L. Pilchak, W. Tang, H. Sahiner, A. P. Reynolds, and J. C. Williams, Metall. Mater. Trans. A., 2011, 42A, pp. 745–62.

    Article  Google Scholar 

  44. A. L. Pilchak and J. C. Williams, Metall. Mater. Trans. A., 42A (2011) 773–94.

    Article  Google Scholar 

  45. A. H. Cottrell, J. Iron Steel Inst., 1945, Vol. 151, pp. 93–104.

    CAS  Google Scholar 

  46. H.-G. Lambers, D. Canadinc and H. J. Maier, Mater. Sci. Eng. A, 2012, Vol. 541 pp. 73–80.

    Article  CAS  Google Scholar 

  47. M. Rubal: M.S. Thesis, The Ohio State University, Columbus, 2009.

  48. S. Norton: Ph.D. Thesis, The Ohio State University, Columbus, 2006.

  49. J. O. Andersson, T. Helander, L. Höglund, P. F. Shi and B. Sundman, CALPHAD, 2002, Vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  50. S. S. Babu, International Materials Reviews, 2009, Vol. 54, pp. 333–67.

    Article  CAS  Google Scholar 

  51. W. Pantleon, J.T.R. Trotzschel, and P. Klimanek: J. Phys IV France, 1997, vol. 7, pp. C3-649–C3-654.

  52. P. Larour. J. Noack, and W. Bleck (2009) MP Mater. Test. 51:184–98.

    CAS  Google Scholar 

  53. T. R. Bieler and S. L. Semiatin, Int. J. Plast., 2002, Vol. 18, pp. 1165–89.

    Article  CAS  Google Scholar 

  54. S.S. Babu, S.M. Kelly, E.D. Specht, T.A. Palmer, and J.W. Elmer: Proceedings of International Conference on Solid–Solid Phase Transformations, vol. 2, J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen, and W.A. Soffa, eds., 2005, pp. 503–08.

  55. N. V. Lopatin, G. A. Salishchev and S. P. Galkin, Russ. J. Non-Ferrous Met., 2011, Vol. 52, pp. 442–47.

    Article  Google Scholar 

  56. W. Woo, Z. Feng, X. L. Wang, D. W. Brown, B. Clausen, K. An, H. Choo, C. R. Hubbard, and S. A. David, Sci. Technol. Weld. Join., 2007, Vol. 12, pp. 298–303.

    Article  CAS  Google Scholar 

  57. X. Liu, C. Tan, J. Zhang, F. Wang, H. Cai., Int. J. Impact Eng., 2009, Vol. 36, pp. 1143–49.

    Article  Google Scholar 

  58. S. Liao and J. Duffy, Mech. Phys. Solids, 1998, Vol. 46, pp. 2201–31.

    Article  CAS  Google Scholar 

  59. T. Seshacharyulu, S. C. Medeiros, W. G. Frazier and Y. V. R. K. Prasad, Mater. Sci. Eng. A, 2000, Vol. 284, pp. 184–94.

    Article  Google Scholar 

  60. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Science/Engineering/Math; 3rd ed., April 1, 1986.

  61. V. D. Manvatkar, A. Arora, A. De, and T. DebRoy, Sci. Technol. Weld. Join., 2012, Vol. 17, pp. 460–66.

    Google Scholar 

  62. C.I. Chang, C.J. Lee, J.C. Huang (2004) Scripta Mater. 51:509–14.

    Article  CAS  Google Scholar 

  63. L. He, A. Dehghan-Manshadi and R. J. Dippenaar, Mater. Sci. Eng. A, 2012, Vol. 549, pp. 163–67.

    Article  CAS  Google Scholar 

  64. N. Gey, P. Bocher, E. Uta, L. Germain, and M. Humbert, Acta Mater., 2010, Vol. 60, pp. 2647–55.

    Article  Google Scholar 

Download references

Acknowledgments

The current study was supported by the Air Force Research Lab through the Universal Technology Corp. Grant #09-S568-067-01-C1. The authors would like to thank the grant manager, Dr. Rollie Dutton, for his encouragement and support during this project. The authors also thank the review board of the Metallurgical Transactions A for their detailed review and suggestions for modifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Babu.

Additional information

Manuscript submitted October 19, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, S.S., Livingston, J. & Lippold, J.C. Physical Simulation of Deformation and Microstructure Evolution During Friction Stir Processing of Ti-6Al-4V Alloy. Metall Mater Trans A 44, 3577–3591 (2013). https://doi.org/10.1007/s11661-013-1782-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1782-z

Keywords

Navigation