Skip to main content
Log in

Phase Equilibria, Microstructure, and High-Temperature Strength of TiC-Added Mo-Si-B Alloys

  • Symposium: Beyond Nickel Base Superalloys II
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

TiC was added to Mo-Si-B alloys using a conventional Ar arc-melting technique, and the phase equilibria, microstructure evolution, and high-temperature strength at 1673 K (1400 °C) were investigated. The primary phase changed to Mo solid solution (Moss), Mo5SiB2 (T2), or TiC depending on the composition. Following the primary phase solidification, a Moss + TiC, Moss + T2, or Moss + T2 + TiC + Mo2C eutectic reaction took place as the secondary solidification step. In some alloys, Moss + T2 + TiC and Moss + T2 + Mo2C eutectic reactions were present as higher-order solidification steps. After annealing at 2073 K (1800 °C) for 24 hours, Moss, T2, TiC, and Mo2C coexisted stably with microstructural coarsening. The coarsening rate was much faster in an alloy with no TiC dispersion, suggesting that TiC has a strong pinning effect on the grain boundary and interface migration. Compression tests conducted at 1673 K (1400 °C) revealed strength properties of almost all the alloys that were better than those of the Mo-Hf-C alloy (MHC). Alloy densities were 9 g/cm3 or less, which is lighter than pure Mo and MHC (≥10 g/cm3) and competitive with Ni-base superalloys. TiC-added Mo-Si-B alloys are promising candidates for ultrahigh-temperature materials beyond Ni-base superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.M. Dimiduk and J.H. Perepezko: MRS Bulletin, 2003, vol. 28, pp. 639–45.

    Article  Google Scholar 

  2. R. Mitra: Int. Mater. Rev., 2006, vol. 51, pp. 13–64.

    Article  Google Scholar 

  3. M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, Ch. Somsen, T. Depka, H.-J. Christ, B. Gorr, and S. Burk: JOM, 2009, vol. 61, pp. 61–7.

    Google Scholar 

  4. C.A. Nunes, R. Sakidja and J.H. Perepezko: in Structural Intermetallics, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, TMS, Warrendale, PA, 1997, pp. 831–39.

  5. Y. Yang and Y.A. Chang: Intermetallics, 2005, vol. 13, pp. 121–8.

    Article  Google Scholar 

  6. J.H. Schneibel, C.T. Liu, D.S. Easton, and C.A. Carmichael: Mater. Sci. Eng. A, 1999, vol. 261, pp.78–83.

    Article  Google Scholar 

  7. J.H. Schneibel, M.J. Kramer, and D.S. Easton: Scripta Mater., 2002, vol. 46, pp.217–21.

    Article  Google Scholar 

  8. K. Yoshimi, S. Nakatani, N. Nomura, and S. Hanada: Intermetallics, 2003, vol. 11, pp.787–94.

    Article  Google Scholar 

  9. K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi: Intermetallics, 2001, vol. 9, pp.591–602.

    Article  Google Scholar 

  10. K. Ito, M. Kumagai, T. Hayashi, and M. Yamaguchi: Scripta Mater., 2003, vol. 49, pp.285–90.

    Article  Google Scholar 

  11. A.P. Alur, N. Chollacoop, and K.S. Kumar: Acta Mater., 2004, vol. 52, pp.5571–87.

    Article  Google Scholar 

  12. P. Jain and K.S. Kumar: Acta Mater., 2010, vol. 58, pp.2124–42.

    Article  Google Scholar 

  13. K. Yoshimi, S. Nakatani, T. Suda, S. Hanada, and H. Habazaki: Intermetallics, 2002, vol. 10, pp.407–14.

    Article  Google Scholar 

  14. F.A. Rioult, S.D. Imhoff, R. Sakidja, and J.H. Perepezko: Acta Mater., 2009, vol. 57, pp.4600–13.

    Article  Google Scholar 

  15. J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie: Metall. Mater. Trans. A, 2005, vol. 36A, pp.2393–402.

    Article  Google Scholar 

  16. A. Sato, A.-C. Yeh, T. Kobayashi, T. Yokokawa, H. Harada, T. Murakumo, and J.X. Zhang: Energy Mater., 2007, vol. 2, pp.19–25.

    Article  Google Scholar 

  17. R.A. Lula: Heat-Resistant Materials, ASM International, Materials Park, OH, 1997, pp. 361–82.

    Google Scholar 

  18. V.N. Eremenko and T.Ya. Velikanova: Handbook of Ternary Alloy Phase Diagrams, vol. 6, ASM International, Metals Park, OH, 1995, pp. 7092.

    Google Scholar 

  19. H. Kurishita, Reiji Matsubara, J. SHiraishi, and H. Yoshinaga: Mater. Trans. JIM, 1986, vol. 27, pp.858–69.

  20. W.M. Haynes: Handbook of Chemistry and Physics, 93rd ed., CRC Press, Boca Raton, FL, 2012, pp. 4–96.

    Google Scholar 

  21. Y. Yang, Y.A. Chang, L. Tan, and W. Cao: Acta Mater., 2005, vol. 53, pp.1711–20.

    Article  Google Scholar 

  22. R. Sakidja and J.H. Perepezko: Metall. Mater. Trans. A, 2005, vol. 36A, 507–14.

    Article  Google Scholar 

  23. R. Sakidja and J.H. Perepezko: J. Nucl. Mater., 2007, vol. 366, pp.407–16.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the funding program for Next Generation World-Leading Researchers (NEXT Program) (No. GR017) and a Grant-in-Aid for Scientific Research (No. 23-4805) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyosuke Yoshimi.

Additional information

Manuscript submitted December 21, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, S., Yoshimi, K., Ha, SH. et al. Phase Equilibria, Microstructure, and High-Temperature Strength of TiC-Added Mo-Si-B Alloys. Metall Mater Trans A 45, 1112–1123 (2014). https://doi.org/10.1007/s11661-013-1779-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1779-7

Keywords

Navigation