Skip to main content
Log in

Microstructure and Corrosion Properties of AlCoCrFeNi High Entropy Alloy Coatings Deposited on AISI 1045 Steel by the Electrospark Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Electrospark deposition (ESD) was employed to clad the AlCoCrFeNi high-entropy alloy (HEA) on AISI 1045 carbon steel. The relationship between the microstructure and corrosion properties of the HEA-coated specimens was studied and compared with that of the copper-molded cast HEA material. Two major microstructural differences were found between the cast HEA material and the HEA coatings. First, the cast material comprises both columnar and equiaxed crystals with a columnar-to-equiaxed transition (CET), whereas the HEA coatings consist of an entirely columnar crystal structure. The CET phenomenon was analyzed based on Hunt’s criterion. Second, unlike the cast HEA material, there was no obvious Cr-rich interdendritic segregation and nano-sized precipitate distributed within the dendrites of the HEA coating. With regard to corrosion properties, the corrosion current of the HEA-coated specimen was significantly lower than for the 1045 steel and the cast HEA material. This was attributed to the ESD specimen having a relatively high Cr oxide and Al oxide content at the surface. Moreover, for the ESD specimen, the absence of Cr-rich interdendritic phase and second-phase precipitation resulted in a relatively uniform corrosion attack, which is different from the severe galvanic corrosion attack that occurred in the cast specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Cook and R. Wildt: in Steel in Sustainable Construction: IISI World Conference Proceedings, M. Sansom, eds. Int. Iron and Steel Inst., 2002, pp. 321–327.

  2. E. McCafferty: Corrosion, 2001, vol. 57, pp. 1011-1029.

    Article  CAS  Google Scholar 

  3. 88

    Article  CAS  Google Scholar 

  4. T.L. Metroke, R.L. Parkhill, E.T. Knobbe: Process in Organic Coatings, 2001, vol. 41, pp. 233-238.

    Article  CAS  Google Scholar 

  5. M.P. Nascimento, R.C. Souza, I.M. Miguel, W.L. Pigatin, H.J.C. Voorwald: Surf. Coat. Technol., 2001, vol. 138, pp. 113–24.

    Article  CAS  Google Scholar 

  6. C.E. Bird, F.J. Strauss: Mater. Perform., 1976, vol. 15, pp. 27-29.

    CAS  Google Scholar 

  7. F. E. Goodwin: in Zinc-Based Steel Coatings Systems: Metallurgy and Performance, G. Krauss and D.K. Matlock, eds. The Minerals Metals Materials Society, Warrendale, Pennsylvania, 1990, pp. 183-193.

  8. R.N. Johnson: in the 45th Annual Technical Conference Proceedings. Society of Vacuum Coaters, Albuquerque, NM, 2002, pp.87-92.

    Google Scholar 

  9. Y.J. Xie, M.C. Wang, D.W. Huang: Appl. Surf. Sci., 2007, vol. 253, pp. 6149-6156.

    Article  CAS  Google Scholar 

  10. S. Cadney, M. Brochu: Intermetallics, 2008, vol. 16, pp. 518-523.

    Article  CAS  Google Scholar 

  11. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2533-2536.

    Article  CAS  Google Scholar 

  12. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375-377, pp. 213-218

    Google Scholar 

  13. 181904

    Article  Google Scholar 

  14. S. Varalakshmi, M. Kamaraj, B.S. Murty: J. Alloys Compd., 2008, vol. 460, pp. 253-257.

    Article  CAS  Google Scholar 

  15. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang: Adv. Eng. Mater., 2004, vol. 63, pp. 299-303.

    Article  Google Scholar 

  16. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 881-893.

    Article  CAS  Google Scholar 

  17. S. Ranganathan: Curr. Sci., 2003, vol. 85, pp. 1404-1406.

    Google Scholar 

  18. C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih: J. Electrochem. Soc., 2007, vol. 154, pp. C424-C430.

    Article  CAS  Google Scholar 

  19. Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih: Corros. Sci., 2005, vol. 47, pp. 2257-2279.

    Article  CAS  Google Scholar 

  20. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1263-1271.

    Article  CAS  Google Scholar 

  21. H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh: Metall. Mater. Trans. B, 2009, vol. 163, pp. 184-189.

    Google Scholar 

  22. Y.F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang: Corros. Sci., 2010, vol. 52, pp. 1026-1034.

    Article  CAS  Google Scholar 

  23. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6975-6979.

    Article  Google Scholar 

  24. T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong: Surf. Coat. Technol., 2004, vol. 188, pp. 193-200.

    Article  Google Scholar 

  25. J.H. Chen, P.H. Hua, P.N. Chen, C.M. Chang, M.C. Chen, W.T. Wu: Mater. Lett., 2008, vol. 62, pp. 2490-2492.

    Article  CAS  Google Scholar 

  26. J.H. Chen, P.N. Chen, C.M. Lin, C.M. Chang, Y.Y. Chang, W. Wu: Surf. Coat. Technol., 2009, vol. 203, pp. 3231-3234.

    Article  CAS  Google Scholar 

  27. Y. Pan, H. Zhang, Y.Z. He: Materials & Design, 2011, vol. 32, pp. 1910-1915.

    Article  Google Scholar 

  28. H. Zhang, Y.Z. He, Y. Pan, L.Z. Pei: Intermetallics, 2011, vol. 19, pp. 1130-1135.

    Article  CAS  Google Scholar 

  29. Q.H. Li: MPhil. Thesis, The Hong Kong Polytechnic University, 2012.

  30. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu: Mater. Sci. Eng. A, 2008, vol. 491, pp. 154-158.

    Article  Google Scholar 

  31. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75-83.

    Article  CAS  Google Scholar 

  32. W. Kurz, C. Bezençon and M. Gäumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185-191.

    Article  CAS  Google Scholar 

  33. M. Gäumann, R. Trivedi, W. Kurz: Mater. Sci. Eng. A, 1997, vol. 226, pp. 763-769.

    Article  Google Scholar 

  34. W. Kurz, B. Giovanola, R. Trivedi: Acta Metallurgica, 1986, vol. 34, pp. 823-830.

    Article  CAS  Google Scholar 

  35. J. Lipton, W. Kurz, R. Trivedi: Acta Metallurgica, 1987, vol. 35, pp. 957-964.

    Article  CAS  Google Scholar 

  36. D.A. Porter, K.E. Easterling: in Phase Transformations in Metals and Alloys. Van Nostrand Reinhold Co., New York, 1981, p. 290.

  37. N. Saunders: J. Japanese Inst. Light Metals, 2001, vol. 51, pp. 141-150.

    CAS  Google Scholar 

  38. Y.J. Xie, M.C. Wang: Surf. Coat. Technol., 2006, vol. 201, pp. 3564–3570.

    Article  CAS  Google Scholar 

  39. G. Goodall, C. Kaplin, M. Brochu: Can. Metall. Quart., 2011, vol. 50, pp. 145-152.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was fully funded by the Research Committee of the Hong Kong Polytechnic University under research student project account code RPP9. The authors are grateful to Prof. L. Liu of Huazhong University of Science and Technology (China) for his help in the preparation of the cast HEA rods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Yue.

Additional information

Manuscript submitted June 22, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q.H., Yue, T.M., Guo, Z.N. et al. Microstructure and Corrosion Properties of AlCoCrFeNi High Entropy Alloy Coatings Deposited on AISI 1045 Steel by the Electrospark Process. Metall Mater Trans A 44, 1767–1778 (2013). https://doi.org/10.1007/s11661-012-1535-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1535-4

Keywords

Navigation