Skip to main content
Log in

Influence of the Inclusion Shape on the Rolling Contact Fatigue Life of Carburized Steels

  • Symposium: Fatigue & Corrosion Damage in Metallic Materials: Fundamentals, Modeling, and Prevention (2012)
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It has been well known that the flaking failure in rolling contact fatigue (RCF) originates from nonmetallic inclusions in steels, and their apparent size is one of the important factors affecting RCF life. However, the influence of inclusion shape on the RCF life has not been fully clarified. In this study, attention was paid to the influence of the inclusion shape on the RCF life. This was evaluated by using carburized JIS-SCM420 (SAE4320) steels that contained two different shapes of MnS—stringer type and spheroidized type—as inclusions. Sectional observations were made to investigate the relation between the occurrence of shear crack in the subsurface and the shape of MnS. It was found that the RCF life was well correlated with the length of MnS projected to the load axis, and the initiation of shear crack in subsurface was accelerated as the length of MnS increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G. Lundberg and A. Palmgren: Acta Polytech. Mech. Eng., 1947, vol. 1, p. 3.

    Google Scholar 

  2. T. Uesugi: Trans. Iron Steel Inst. Jpn., 1988, vol. 28(11), pp. 893–99.

    Article  CAS  Google Scholar 

  3. G. Akashi, K. Doi, Y. Matsushima, I. Takagi, and Y. Fukuzaki: Wire J. Int., 1999, vol. 32(8), pp. 92–97.

    Google Scholar 

  4. D. Nelias, M.L. Dumont, F. Champiot, A. Vincent, D. Girodin, R. Fougeres, and L. Flamand: Trans. ASME J. Tribol., 1999, vol. 121(240), pp. 240–51.

    Article  CAS  Google Scholar 

  5. P.C. Becker: Met. Technol., 1981, vol. 8(6), pp. 234–43.

    CAS  Google Scholar 

  6. A. Kerrigan, J.C. Kuijpers, A. Gabelli, and E. Ioannides: J. ASTM Int., 2006, vol. 3(6), pp. 101–06.

    Article  Google Scholar 

  7. W.E. Littman and R.L. Widner: Trans. ASME J. Basic Eng., 1996, vol. 88(3), pp. 624–36.

    Article  Google Scholar 

  8. A. Vincent, G. Lormand, P. Lamagnere, L. Gosset, D. Griodin, G. Dudragne, and R. Fougeres: Bearing Steel into the 21st Century, J.J.C. Hoo, ed., ASTM International, West Conshohocken, PA, 1988, pp. 109–23.

  9. I.J. Davies, M.A. Clarke, and D. Dulieu: Bearing Steel into the 21 st Century, J.J.C. Hoo, ed., ASTM International, West Conshohocken, PA, 1988, pp. 375–89.

  10. D. Girodin, G. Dudragne, J. Courbon, and A. Vincent: J. ASTM Int., 2006, vol. 3(6), pp. 85–100.

    Google Scholar 

  11. P. Trady, L. Tolnay, Gy. Károly, and J. Mezei: Proc. 6th Int. Iron and Steel Cong., ISIJ, Nagoya, Japan, 1990, p. 629.

    Google Scholar 

  12. T. Lund and J. Akesson: ASTM Spec. Tech. Publ., No. 987, J.J.C. Hoo, ed., American Society for Testing and Materials, West Conshohocken, PA, 1988, p. 308.

  13. Y. Kurebayashi, K. Namiki, T. Shibata, and M. Takagi: CAMP ISIJ, 1989, vol. 2, p. 1976.

  14. A. Melander: Int. J Fatigue, 1997, vol. 19, pp. 13–24.

    Article  CAS  Google Scholar 

  15. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Des., 2011, vol. 32, pp. 4980–85.

    Article  CAS  Google Scholar 

  16. T. Fujimatsu, M. Nagao, M. Nakasaki, and K. Hiraoka: Sanyo Tech. Rep., 2006, vol. 13(1), pp. 62–66.

    Google Scholar 

  17. M. Nagao, K. Hiraoka, and Y. Unigame: Sanyo Tech. Rep., 2005, vol. 12(1), pp. 38–45.

    Google Scholar 

  18. D.L. McDowell: Mater. Sci. Eng. A, 2007, vols. 468–470, pp. 4–14.

    Google Scholar 

  19. E.S. Alley and R.W. Neu: Int. J. Fatigue, 2010, vol. 32, pp. 841–50.

    Article  CAS  Google Scholar 

  20. E.S. Alley, K. Sawamiphakdi, P.I. Anderson, and R.W. Neu: J. ASTM Int., 2010, vol. 7(2), pp. 1–20.

    Article  Google Scholar 

  21. R. Prasannavenkatesan, J. Zhang, D.L. McDowell, G.B. Olson, and H. Jou: Int. J. Fatigue, 2009, vol. 31, pp. 1176–89.

    Article  CAS  Google Scholar 

  22. J. Zhang, R. Prasannavenkatesan, M.M. Shenoy, and D.L. McDowell: Eng. Fract. Mech., 2009, vol. 76, pp. 315–34.

    Article  CAS  Google Scholar 

  23. A. Stienon, A. Fazekas, J.Y. Buffiere, A. Vincent, P. Daguier, and F. Merchi: Mater. Sci. Eng. A, 2009, vols. 513–514, pp. 376–83.

    Google Scholar 

  24. E. Kabo: Int. J. Fatigue, 2002, vol. 24, pp. 887–94.

    Article  Google Scholar 

  25. K. Hashimoto, K. Hiraoka, and K. Kida: CAMP ISIJ, 2010, vol. 23, p. 430.

  26. K. Hashimoto, K. Hiraoka, and K. Kida: TMS2011 140 th Annual Meeting & Exhibition, San Diego Convention Center, San Diego, CA, 2011.

  27. K. Kizawa and M. Gotoh: Koyo Eng. J., English Edition, 2003, no. 163E, p. 37.

  28. K. Furumura and K. Hirakawa: NSK Tech. J., 1979, vol. 638, pp. 1–13.

    Google Scholar 

  29. K. Hashimoto, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Sci. Technol., 2012, vol. 28(1), pp. 39–43.

    Article  CAS  Google Scholar 

  30. Y. Furuya, S. Matsuoka, and T. Abe: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2517–26.

    Article  CAS  Google Scholar 

  31. Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, London, U.K., 2002.

  32. J. Courbon, G. Lormand, G. Dudragne, P. Daguier, and A. Vincent: Tribol. Int., 2003, vol. 36, pp. 921–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Neishi.

Additional information

Manuscript submitted April 13, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neishi, Y., Makino, T., Matsui, N. et al. Influence of the Inclusion Shape on the Rolling Contact Fatigue Life of Carburized Steels. Metall Mater Trans A 44, 2131–2140 (2013). https://doi.org/10.1007/s11661-012-1344-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1344-9

Keywords

Navigation