Skip to main content

Advertisement

Log in

Hydrogen Embrittlement of a 1500-MPa Tensile Strength Level Steel with an Ultrafine Elongated Grain Structure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A deformation of a tempered martensitic structure (i.e., tempforming) at 773 K (500 °C) was applied to a 0.6 pct C-2 pct Si-1 pct Cr steel. The hydrogen embrittlement (HE) property of the tempformed (TF) steel was investigated by a slow strain rate test (SSRT) and an accelerated atmospheric corrosion test (AACT). Hydrogen content within the samples after SSRT and AACT was measured by thermal desorption spectrometry (TDS). The tempforming at 773 K (500 °C) using multipass caliber rolling with an accumulative are reduction of 76 pct resulted in the evolution of an ultrafine elongated grain (UFEG) structure with a strong 〈110〉//rolling direction (RD) fiber deformation texture and a dispersion of spheroidized cementite particles. The SSRT of the pre-hydrogen-charged notched specimens and the AACT demonstrated that the TF sample had superior potential for HE resistance to the conventional quenched and tempered (QT) sample at a tensile strength of 1500 MPa. The TDS analysis also indicated that the hydrogen might be mainly trapped by reversible trapping sites such as grain boundaries and dislocations in the TF sample, and the hydrogen trapping states of the TF sample were similar to those of the QT sample. The QT sample exhibited hydrogen-induced intergranular fracture along the boundaries of coarse prior-austenite grains. In contrast, the hydrogen-induced cracking occurred in association with the UFEG structure in the TF sample, leading to the higher HE resistance of the TF sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  2. H.H. Johnson: Metall. Trans. B, 1988, vol. 19B, pp. 691–707.

    Article  CAS  Google Scholar 

  3. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    CAS  Google Scholar 

  4. S.M. Lee and J.Y. Lee: Acta Metall., 1987, vol. 35, pp. 2695–700.

    Article  CAS  Google Scholar 

  5. H. Asahi, D. Hirakami, and S. Yamasaki: ISIJ Int., 2003, vol. 43, pp. 527–33.

    Article  CAS  Google Scholar 

  6. R.P.M. Procter and H.W. Paxton: Trans. ASM, 1969, vol. 62, pp. 989–99.

    Google Scholar 

  7. S. Matsuyama: Tetsu-to-Hagané, 1972, vol. 58, pp. 395–410.

    CAS  Google Scholar 

  8. J.F. Lessar and W.W. Gerberich: Metall. Trans. A, 1976, vol. 7A, pp. 953–60.

    CAS  Google Scholar 

  9. S.K. Banerji, C.J. McMahon, Jr., and H.C. Feng: Metall. Trans. A, 1978, vol. 9A, pp. 237–47.

  10. R. Padmanabhan and W.E. Wood: Metall. Trans. A, 1983, vol. 14A, pp. 2347–56.

    CAS  Google Scholar 

  11. W. Hui, H. Dong, Y. Weng, J. Shi, Y. Nie, Z. Zhu, and Y. Chen: Acta Metall. Sin., 2004, vol. 40, pp. 561–68.

    CAS  Google Scholar 

  12. S. Yamasaki, M. Kubota, and T. Tarui: Nippon Steel Technical Report, 1999, no. 80, pp. 50–55.

  13. S. Terasaki, S. Sakashita, S. Takagi, Y. Kimura, and K. Tsuzaki: Proc. Workshop on New Generation Steel, The Chinese Society for Metals, Beijing, China, 2001, pp. 239–44.

    Google Scholar 

  14. Y. Kimura, Y. Sakai, T. Hara, A. Belyakov, and K. Tsuzaki: Scripta Mater., 2003, vol. 49, pp. 1111–16.

    Article  CAS  Google Scholar 

  15. D.C. Langstaff, G. Meyrick, and J.P. Hirth: Corrosion, 1981, vol. 37, pp. 429–37.

    Article  CAS  Google Scholar 

  16. D.G. Enos and J.R. Scully: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1151–66.

    Article  CAS  Google Scholar 

  17. J.S. Kim, Y.H. Lee, D.L. Lee, K.T. Park, and C.S. Lee: Mater. Sci. Eng. A, 2009, vol. 505, pp. 105–10.

    Article  Google Scholar 

  18. Y. Kimura, T. Inoue, F. Yin, O. Sitdikov, and K. Tsuzaki: Scripta Mater., 2007, vol. 57, pp. 465–68.

    Article  CAS  Google Scholar 

  19. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: Science, 2008, vol. 320, pp. 1057–60.

    Article  CAS  Google Scholar 

  20. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: ISIJ Int., 2010, vol. 50, pp. 152–61.

    Article  CAS  Google Scholar 

  21. T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochiai: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 341–55.

    Article  CAS  Google Scholar 

  22. M. Jafari, Y. Kimura, Y. Nie, and K. Tsuzaki: ISIJ Int., 2010, vol. 50, pp. 1660–65.

    Article  CAS  Google Scholar 

  23. M. Cojic and L. Kosec: ISIJ Int., 1997, vol. 37, pp. 412–18.

    Article  Google Scholar 

  24. M. Wang, E. Akiyama, and K. Tsuzaki: Scripta Mater., 2005, vol. 52, pp. 403–08.

    Article  CAS  Google Scholar 

  25. M. Wang, E. Akiyama, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. 398, pp. 37–46.

    Article  Google Scholar 

  26. M. Wang, E. Akiyama, and K. Tsuzaki: Corros. Sci., 2007, vol. 49, pp. 4081–97.

    Article  CAS  Google Scholar 

  27. E. Akiyama, K. Matsukado, M. Wang, and K. Tsuzaki: Corros. Sci., 2010, vol. 52, pp. 2758–65.

    Article  CAS  Google Scholar 

  28. S. Li, Z. Zhang, E. Akiyama, K. Tsuzaki, and B. Zhang: Corros. Sci., 2010, vol. 52, pp. 1660–67.

    Article  CAS  Google Scholar 

  29. S. Li, E. Akiyama, Y. Kimura, K. Tsuzaki, N. Uno, and B. Zhang: Sci. Technol. Adv. Mater., 2010, vol. 11, p. 025005.

    Article  Google Scholar 

  30. W.J. Nam, C.S. Lee, and D.Y. Ban: Mater. Sci. Eng. A, 2000, vol. A289, pp. 8–17.

    CAS  Google Scholar 

  31. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T. Maki: Acta Mater., 2007, vol. 55, pp. 5027–38.

    Article  CAS  Google Scholar 

  32. M. Čerňanský, J. Čermák, N. Zárubová, and P. Wolf: J. Mater. Sci., 1996, vol. 31, pp. 995–1004.

    Article  Google Scholar 

  33. T. Inoue, F. Yin, Y. Kimura, and K. Nagai: J. Japan Inst. Metals, 2005, vol. 69, pp. 943–52.

    Article  CAS  Google Scholar 

  34. ASTM E23-05, 2005 Annual Book of ASTM Standards, 2005, pp. 158–84.

  35. M. Ojima, Y. Adachi, Y. Tomota, K. Ikeda, T. Kamiyama, and Y. Katada: Mater. Sci. Eng. A, 2009, vol. A 527, pp. 16–24.

    Google Scholar 

  36. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. A527, pp. 2738–46.

    CAS  Google Scholar 

  37. T. Ungár, M. Victoria, P. Marmy, P. Hanak, and G. Szenes: J. Nucl. Mater., 2000, vol. 276, pp. 278–82.

    Article  Google Scholar 

  38. M. Zamanzadeh, A. Allam, C. Kato, B. Ateya, and H.W. Pickering: J. Electrochem. Sci. Tech., 1982, vol. 129, pp. 284–89.

    Article  CAS  Google Scholar 

  39. S. Sakashita, E. Akiyama, K. Tsuzaki, and T. Takahashi: CAMP-ISIJ, 2002, vol. 15, p. 576.

    Google Scholar 

  40. ASTM E112-96: 2005 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2005, pp. 267–92.

  41. G. Kurdjumov and G. Sachs: Z. Phys., 1930, vol. 64, pp. 325–43.

    Article  Google Scholar 

  42. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    Article  CAS  Google Scholar 

  43. A. Belyakov, Y. Kimura, Y. Adachi, and K. Tsuzaki: Mater. Trans., 2004, vol. 45, pp. 2812–21.

    Article  CAS  Google Scholar 

  44. Y. Tomota, T. Suzuki, A. Kanie, Y. Shiota, M. Uno, A. Moriai, N. Minakawa, and Y. Morii: Acta Mater., 2005, vol. 53, pp. 463–67.

    Article  CAS  Google Scholar 

  45. M.F. Ashby: Philos. Mag., 1970, vol. 21, pp. 399–424.

    Article  CAS  Google Scholar 

  46. K. Takai, G. Yamauchi, M. Nakamura, and M. Nagumo: J. Japan Inst. Metals, 1998, vol. 62, pp. 267–75.

    CAS  Google Scholar 

  47. S. Yamasaki and T. Takahashi: Tetsu-to-Hagané, 1997, vol. 83, pp. 454–59.

    CAS  Google Scholar 

  48. Y. Kimura: Eng. Mater., 2009, vol. 57, pp. 34–35.

    CAS  Google Scholar 

  49. B.G. Pound: Acta Mater., 1998, vol. 46, pp. 5733–43.

    Article  CAS  Google Scholar 

  50. H.G. Lee and J.Y. Lee: Acta Metall., 1984, vol. 32, pp. 131–36.

    Article  CAS  Google Scholar 

  51. G.M. Pressouyre and I.M. Bernstein: Metall. Trans. A, 1981, vol. 12A, pp. 835–44.

    Google Scholar 

  52. K. Ebihara, H. Kaburaki, T. Suzudo, and K. Takai: ISIJ Int., 2009, vol. 49, pp. 1907–13.

    Article  CAS  Google Scholar 

  53. K. Takai and R. Watanuki: ISIJ Int., 2003, vol. 43, pp. 520–26.

    Article  CAS  Google Scholar 

  54. F.G. Wei, T. Hara, and K. Tsuzaki: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 587–97.

    Article  CAS  Google Scholar 

  55. F.G. Wei and K. Tsuzaki: Scripta Mater., 2005, vol. 52, pp. 467–72.

    Article  CAS  Google Scholar 

  56. F.G. Wei, T. Hara, T. Tsuchida, and K. Tsuzaki: ISIJ Int., 2003, vol. 43, pp. 539–47.

    Article  CAS  Google Scholar 

  57. P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, and R.O. Ritchie: J. Mech. Phys. Solid, 2010, vol. 58, pp. 206–26.

    Article  CAS  Google Scholar 

  58. D. Li, R.P. Gangloff, and J.R. Scully: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 849–64.

    Article  CAS  Google Scholar 

  59. H. Ohtani and C.J. McMahon, Jr.: Acta Metall., 1975, vol. 23, pp. 377–86.

  60. Y. Kimura, S. Takagi, T. Hara, S. Terasaki, and K. Tsuzaki: J. Phys. IV, 2003, vol. 112, pp. 403–06.

    CAS  Google Scholar 

  61. G. Krauss: Steel: Heat Treatment and Processing Principles, 2nd ed., ASM International, Materials Park, OH, 1990, pp. 231–36.

  62. K. Ameyama, T. Maki, and I. Tamura: J. Jpn. Inst. Metals, 1986, vol. 50, pp. 602–11.

    CAS  Google Scholar 

  63. T. Furuhara, S. Takagi, H. Watanabe, and T. Maki: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1635–46.

    Article  CAS  Google Scholar 

  64. Y. Yusa, T. Hara, K. Tsuzaki, and T. Takahashi: Mater. Sci. Eng. A, 1999, vols. 273–275, pp. 462–65.

    Google Scholar 

  65. S. Yusa, T. Hara, and K. Tsuzaki: J. Jpn. Inst. Metals, 2000, vol. 64, pp. 1230–38.

    CAS  Google Scholar 

  66. J.-Y. Lee and U.-I. Chung: Mater. Sci. Eng., 1987, vol. 95, pp. 273–80.

    Article  CAS  Google Scholar 

  67. J.D. Embury, N.J. Petch, A.E. Wraith, and E.S. Wright: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 114–18.

    CAS  Google Scholar 

  68. D.W. Kum, T. Oyama, J. Wadsworth, and O.D. Sherby: J. Mech. Phys., 1983, vol. 31, pp. 173–86.

    Article  Google Scholar 

  69. J.W. Morris, Jr., Z. Guo, C.R. Krenn, and Y.-H. Kim: ISIJ Int., 2001, vol. 41, pp. 599–611.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Mr. Kuroda and Mr. Taniuchi for the materials processing with caliber-rolling, Ms. Hirota for her help with the TDS analysis, and Dr. Kameda for his suggestions for this study. The study for the QT samples was carried out as a part of research activities of Fundamental Studies on Technologies for Steel Materials with Enhanced Strength and Functions by the Consortium of The Japan Research and Development Center of Metals and the New Energy and Industrial Technology Development Organization. The study for the TF sample was partly supported by the Iketani Science and Technology Foundation and by the Japan Science and Technology Agency under collaborative research based on industrial demand Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuuji Kimura.

Additional information

Manuscript submitted November 29, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, Y., Kimura, Y., Inoue, T. et al. Hydrogen Embrittlement of a 1500-MPa Tensile Strength Level Steel with an Ultrafine Elongated Grain Structure. Metall Mater Trans A 43, 1670–1687 (2012). https://doi.org/10.1007/s11661-011-0974-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0974-7

Keywords

Navigation