Skip to main content
Log in

Modeling of De-cohesion and the Initiation of Hot Tearing in Coherent Mushy Zones of Metallic Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The initiation of a hot tear in the coherent mushy zone of metallic alloys is associated commonly with the opening up of the solid skeleton caused by thermally induced deformation. A previously established constitutive model for the continuum modeling of coherent mushy zones has been further developed in the current study to address the opening up, or decohesion, of the solid skeleton associated with volumetric tensile deformation. Whereas the original model accounts for the cohesion of the solid skeleton caused by the deformation by means of an internal variable, an additional internal variable accommodating the decohesion has been introduced in the new model. The modeled decohesion is interpreted as the initiation of a hot tear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(A_2, A_3\) :

functions of \(g_{\rm s}\) in closing relations

C 0 :

initial value of cohesion

C :

internal variable for partial cohesion of the mush

C*:

maximum (saturation) value of C

D 0 :

initial value of decohesion

D :

internal variable for partial de-cohesion of the mush

g :

gravity vector

\(g_{\rm s}, g_l\) :

volume fraction of solid, liquid

\(g_{\rm s}^{\rm coh}\) :

fraction of solid at coherency

\(\tilde{g}_{\rm s}(T)\) :

solidification path

\({\user2{{I}}}\) :

identity tensor

J 1 :

first stress invariant of the effective stress tensor

J 2 :

second stress invariant of the effective stress tensor

K :

permeability

Lmw:

parameters in decohesion relation

\(p_{\rm s}, p_{\rm l}\) :

pressure in solid, liquid

R :

molar gas constant

t :

time

T :

temperature

T l :

liquidus temperature

\({{\bf u}}_{\rm s}\) :

solid displacement vector

\({{\bf v}}_{\rm s}\) :

solid velocity vector

X :

stress triaxiality

α:

function of \(g_{\rm s}\) and X

β S :

solidification shrinkage at \(T_{\rm l}\)

β T :

thermal expansion coefficient

γ:

functions of \(g_{\rm s}\) in decohesion relation

\(\Upgamma\) :

interfacial mass transfer

\({\varvec{{\epsilon}}}_{\rm s}, {\varvec{{\epsilon}}}_{\rm s}^T, {\varvec{{\epsilon}}}_{\rm s}^e, {\varvec{{\epsilon}}}_{\rm s}^p\) :

total, thermal, elastic, and viscoplastic strain

\(\dot{\epsilon}^p_{\rm s}\) :

effective viscoplastic strain rate

\(\dot{\epsilon}_{0}\) :

reference viscoplastic strain rate in Eqs. [6] and [19]

\(\dot{\epsilon}^p_{\rm eq}\) :

equivalent viscoplastic strain rate

\({\dot{\varvec{\epsilon}}}_{\rm s}\) :

solid strain rate tensor

\({\dot{\varvec{\epsilon}}}_{\rm s}^p\) :

viscoplastic strain rate tensor in mush

\({\dot{\varvec{\epsilon}}}^{\prime p}_{\rm s}\) :

deviatoric viscoplastic strain rate

\(\hbox{tr}({{\dot{\varvec{\epsilon}}}^{p}_{\rm s}})\) :

volumetric viscoplastic strain rate

\(\dot\epsilon_{11}, \dot\epsilon_{22}, \dot\epsilon_{33}\) :

main strain rate components

μ:

dynamic liquid viscosity

\(p, \alpha_0, \alpha_1, \Updelta g_{\rm s}, X_0, \Updelta X\) :

parameters in functions α and C *

\(\rho_{\rm s}, \rho_{\rm l}, \rho\) :

solid, liquid, mixture density

\(\sigma_0, \dot\epsilon_{0}, Q, n\) :

parameters in solid creep law

\({\varvec{\sigma}}\) :

stress tensor

\({\varvec{\sigma}}_{s}\) :

solid stress tensor

\({\varvec{{\hat\sigma}}}_{\rm s}\) :

effective solid stress tensor

\(\bar{\sigma}_{\rm s}\) :

Von Mises stress

\(\sigma_{11}, \sigma_{22}, \sigma_{33}\) :

main stress components

\({\varvec{\tau}}_{\rm s}\) :

deviatoric part of \({\varvec{\sigma}}_{\rm s}\)

References

  1. O. Ludwig, J.-M. Drezet, C.L. Martin, and M. Suery: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1525–35.

    Article  CAS  Google Scholar 

  2. O. Ludwig, J.-M. Drezet, P. Meneses, C.L. Martin, M. Suery: Mater. Sci. Eng., 2005, vol. 413-414A, pp. 174–79.

    Google Scholar 

  3. J. Campbell: Castings, Butterworth Heinemann, London, UK, 1991, pp. 219–31.

    Google Scholar 

  4. G.K. Sigworth: AFS Trans., 1999, vol. 106, pp. 1053–69.

    Google Scholar 

  5. M. Rappaz, J.-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55.

    Article  CAS  Google Scholar 

  6. V. Mathier, A. Jacot, and M. Rappaz: Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 479–90.

    Article  CAS  Google Scholar 

  7. S. Verende, J.-M. Drezet, and M. Rappaz: Acta Mater., 2009, vol. 57, pp. 1554–69.

    Article  Google Scholar 

  8. M. Rappaz, A. Jacot, and W.J. Boettinger: Metall. Trans. A, 2003, vol. 34A, pp. 467–79.

    Article  CAS  Google Scholar 

  9. M. Rappaz, J.-M. Drezet, V. Matheir, and S. Verende: Mater. Sci. Forum, 2006, vol. 12, pp. 1665–74.

    Article  Google Scholar 

  10. S. Vernede, P. Jarry, and M. Rappaz: Modeling of Casting, Welding and Advanced Solidification Processes XI, TMS, Warrwndale, PA, 2006, pp. 635–42.

    Google Scholar 

  11. O. Ludwig: Ph.D. Thesis, Institute National Poly Technique Grenoble, Grenoble, France, 2004.

  12. J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22B, pp. 349–61.

    Article  CAS  Google Scholar 

  13. M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081–93.

    Article  Google Scholar 

  14. M. M’Hamdi, A. Mo, H.G. Fjær: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3069–83.

    Article  Google Scholar 

  15. D. Mortensen: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 119–33.

    Article  CAS  Google Scholar 

  16. A.L. Dons, E.K. Jensen, Y. Langsrud, E. Trømborg, and S. Brusethaug: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2135–46.

    Article  CAS  Google Scholar 

  17. C.L. Martin, D. Favier, and M. Suéry: Int. J. Plast., 1999, vol. 15, pp. 981–1008.

    Article  CAS  Google Scholar 

  18. M. Braccini, C.L. Martin, M. Suéry, and Y. Bréchet: Modelling of Casting, Welding and Advanced Solidification Processes—IX, P.R. Sahm, P.N. Hansen, and J.G. Conley, eds., Shaker Verlag, New York, NY, 2000, pp. 18–24.

  19. O. Ludwig, C.L. Martin, M. Suéry: Proc. ICAA8, Materials Science Forum, Trans Tech Publications, Enfield, NH, 2002, pp. 265–70.

  20. J.C. Michel and P. Sequet: J. Mech. Phys. Solids, 1992, vol. 40, pp. 783–812.

    Article  Google Scholar 

  21. O. Ludwig, C. Martin, M. Suery, J.-M. Drezet, P.-D. Grasso, B. Commet, H.G. Fjaer, and M. M’Hamdi: Aluminium, 2004, vol. 40, pp. 783–812.

    Google Scholar 

  22. L.C. Nicolli, A. Mo, M. M’Hamdi: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 433–42.

    Article  CAS  Google Scholar 

  23. S. Terzi, R. Couturier, L. Guétaz, and B. Viguier: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 598–601.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. H. Fjær at the Institute for Energy Technology (IFE) for numerical implementation of the new constitutive equations into the numerical model ALSIM, as well as for input and advice for the current development. This research was carried out as a part of Casting Top Models project funded by Elkem Aluminium, Hydro, Corus/Aleris, and the Research Council of Norway. The funding for this study is acknowledged gratefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed M’Hamdi.

Additional information

Manuscript submitted March 16, 2010.

Appendix Constraint on C

Appendix Constraint on C

The general tensorial stress in the main directions is given by

$$ {\varvec{\sigma}} = \left(\begin{array}{lll} \sigma _{11} & 0 & 0\\ 0 & \sigma _{22} & 0 \\ 0 & 0 & \sigma _{33} \\ \end{array} \right) $$
(A1)

The deviatoric part of stress is then

$$ {\varvec{\tau}} = \left(\begin{array}{lll} {\frac{1}{3}}(2\sigma _{11}-\sigma _{22}-\sigma _{33}) & 0 & 0 \\ 0 & {\frac{1}{3}}(-\sigma _{11}+2\sigma _{22}-\sigma _{33}) & 0 \\ 0 & 0 & {\frac{1}{3}}(-\sigma _{11}-\sigma _{22}+2\sigma _{33})\\ \end{array}\right) $$
(A2)

According to Eq. [24], the viscoplastic strain rate is given by

$$ \begin{aligned} {\dot{\varvec{\epsilon}}}_{\rm s}^{p}=&\left( \begin{array}{lll}\dot\epsilon _{11} & 0 & 0 \\ 0 & \dot\epsilon _{22}& 0 \\ 0 & 0 & \dot\epsilon _{33}\\ \end{array} \right)= {\frac{\dot{\epsilon}_{0}\exp{\left({\frac{-Q}{RT}}\right)}} {\sigma_{0}^{n}}}\left({\frac{1}{9}}A_2(g_{\rm s})J_1^2+3A_3(g_{\rm s})J_2 \right)^{{\frac{n-1}{2}}}\\ & \left\{ {\frac{-A_{2}}{9D^n}}\left(\begin{array}{lll} -\sigma _{11} & -\sigma _{22} & -\sigma _{33} \\ \end{array}\right) \left( \begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\\ \end{array} \right) \right.\\ & + \left. {\frac{A_{3}}{2C^n}} \left( \begin{array}{lll} (2\sigma _{11}-\sigma _{22}-\sigma _{33}) & 0 & 0 \\ 0 & (-\sigma _{11}+2\sigma _{22}-\sigma _{33}) & 0 \\ 0 & 0 & (-\sigma _{11}-\sigma _{22}+2\sigma _{33})\\ \end{array} \right)\right\} \end{aligned} $$
(A3)

Now, if the loading direction is in one direction only, the 11-direction, say (\(i.e., \sigma _{11}\neq 0, \sigma _{22}=\sigma _{33}=0\)), the viscoplastic strain rates in the two other main directions are

$$ \dot{\varepsilon}^{p}_{22}=\dot{\varepsilon}^{p}_{33}= \left({\frac{A_{2}}{9D^n}} -{\frac{A_{3}}{2C^n}}\right) \sigma _{11} $$
(A4)

Obviously, the quantity cannot be larger (smaller) than zero if σ11 is larger (smaller) than zero. This gives the constraint

$$ \left({\frac{A_{2}}{9D^n}}-{\frac{A_{3}}{2C^n}}\right)\leq 0 \Rightarrow C\leq D/k\hbox{ where } k=\left[{\frac{2}{9}}{\frac{A_{2}(g_{\rm s})}{A_{3}(g_{\rm s})}}\right]^{{\frac{1}{n}}} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihanyar, S., Mo, A., M’Hamdi, M. et al. Modeling of De-cohesion and the Initiation of Hot Tearing in Coherent Mushy Zones of Metallic Alloys. Metall Mater Trans A 42, 1887–1895 (2011). https://doi.org/10.1007/s11661-010-0581-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0581-z

Keywords

Navigation