Skip to main content

Advertisement

Log in

Effect of Alloying Additions on Phase Equilibria and Creep Resistance of Alumina-Forming Austenitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high-temperature creep properties of a series of alumina-forming austenitic (AFA) stainless steels based on Fe-20Ni-(12-14)Cr-(2.5-4)Al-(0.2-3.3)Nb-0.1C (weight percent) were studied. Computational thermodynamics were used to aid in the interpretation of data on microstructural stability, phase equilibria, and creep resistance. Phases of MC (M: mainly Nb), M23C6 (M: mainly Cr), B2 [β-(Ni,Fe)Al], and Laves [Fe2(Mo,Nb)] were observed after creep-rupture testing at 750 °C and 170 MPa; this was generally consistent with the thermodynamic calculations. The creep resistance increased with increasing Nb additions up to 1 wt pct in the 2.5 and 3 Al wt pct alloy series, due to the stabilization of nanoscale MC particles relative to M23C6. Additions of Nb greater than 1 wt pct decreased creep resistance in the alloy series due to stabilization of the Laves phase and increased amounts of undissolved, coarse MC, which effectively reduced the precipitation of nanoscale MC particles. The additions of Al also increased the creep resistance moderately due to the increase in the volume fraction of B2 phase precipitates. Calculations suggested that optimum creep resistance would be achieved at approximately 1.5 wt pct Nb in the 4 wt pct Al alloy series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Viswanathan and W. Bakker: J. Mater. Eng. Perf., 2001, vol. 10, pp. 81–95.

    Article  CAS  Google Scholar 

  2. R. Viswanathan and W. Bakker: J. Mater. Eng. Perf., 2001, vol. 10, pp. 96–101.

    Article  CAS  Google Scholar 

  3. P. Kofstad: High Temperature Corrosion, Elsevier, London, 1988, pp. 389–534.

    Google Scholar 

  4. E.J. Opila: Mater. Sci. Forum, 2004, vols. 461–464, pp. 765–74.

    Article  Google Scholar 

  5. B.A. Pint, R. Peraldi, and P.J. Maziasz: Mater. Sci. Forum, 2004, vols. 461–464, pp. 815–22.

    Article  Google Scholar 

  6. P.J. Maziasz, R.W. Swindeman, J.P. Shingledecker, K.L. More, B.A. Pint, E. Lara-Curzio, and N.D. Evans: Proc. 6th Int. Charles Parsons Turbine Conf., A. Strang, R.D. Conroy, W.M. Banks, M. Blackler, J. Leggett, G.M. McColvin, S. Simpson, M. Smith, F. Starr, and R.W. Vanstone, eds., The Institute of Materials, Minerals, and Mining, Maney Publishing, London, 2003, pp. 1057–73.

  7. Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, and E.A. Payzant: Science, 2007, vol. 316 (5823), pp. 433–36.

    Article  PubMed  ADS  CAS  Google Scholar 

  8. M.P. Brady, Y. Yamamoto, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, and M.L. Santella: Stainless Steel World Mag., Mar. 2008, vol. 20, pp. 23–29.

  9. M.P. Brady, Y. Yamamoto, M.L. Santella, and B.A. Pint: Scripta Mater. 2007, vol. 57 (12), pp. 1117–20.

    Article  CAS  Google Scholar 

  10. M.P. Brady, Y. Yamamoto, M.L. Santella, P.J. Maziasz, B.A. Pint, and C.T. Liu: JOM, vol. 60 (7), 2008, pp. 12–18.

    Article  CAS  Google Scholar 

  11. M.P. Brady, Y. Yamamoto, B.A. Pint, M.L. Santella, P.J. Maziasz, and L.R. Walker: Mater. Sci. Forum, 2008, vols. 595–598, pp. 725–32.

    Article  Google Scholar 

  12. Y. Yamamoto, M.P. Brady, M.L. Santella, B.A. Pint, and P.J. Maziasz: Proc. 33rd Int. Tech. Conf. Coal Utilization, Fuel Systems, B.A. Sakkestad, ed., Coal Technology Association, Gaithersburg, MD, 2008, pp. 1237–46.

  13. P. J. Maziasz: J. Met., 1989, vol. 41, pp. 14–20.

    CAS  Google Scholar 

  14. T. Sourmail: Mater. Sci. Technol., 2001, vol. 17, pp. 1–14.

    CAS  Google Scholar 

  15. T. Sourmail and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 23–34.

    Article  CAS  Google Scholar 

  16. Quality and Properties of NF709 Austenitic Stainless Steel for Boiler Tubing Applications, Nippon Steel Corporation, Tokyo, 1996

  17. J.P. Shingledecker, P.J. Maziasz, N.D. Evans, and M.J. Pollard: Proc. Symp. Sponsored by Materials Science Technology 2005, R.S. Mishra, J.C. Earthman, S.V. Raj, and R. Viswanathan, eds., Pittsburgh, PA, 2005, pp. 25–28

  18. Y. Yamamoto, M. Takeyama, Z.P. Lu, C.T. Liu, N.D. Evans, P.J. Maziasz, and M.P. Brady: Intermetallics, 2008, vol. 16 (3), pp. 453–62.

    Article  CAS  Google Scholar 

  19. Y. Yamamoto, M.P. Brady, Z.P. Lu, C.T. Liu, M. Takeyama, P.J. Maziasz, and B.A. Pint: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2737–46.

    Article  ADS  CAS  Google Scholar 

  20. R.W. Swindeman, P.J. Maziasz, E. Bolling, and J.F. King: Oak Ridge National Laboratory Report No. ORNL-6629/P1, Oak Ridge, TN, 1990.

  21. R.W. Swindeman and P.J. Maziasz: Proc. 1st Int. Conf. on Heat-Resistant Materials, K. Natesan and D.J. Tillack, eds., ASM INTERNATIONAL, Materials Park, OH, 1991, pp. 251–59.

  22. F.H. Stott, G.C. Wood, and J. Stringer: Oxid. Met., 1995, vol. 44 (1–2), pp. 113–45.

    Article  CAS  Google Scholar 

  23. C. Wagner: Corros. Sci., 1965, vol. 5, pp. 751–64.

    Article  CAS  Google Scholar 

  24. M. Kikuchi, M. Sakakibara, Y. Otoguro, H. Mimura, S. Araki, and T. Fujita: in High Temperature Alloys: Their Exploitable Potential, J.B. Marriott, M. Merz, J. Nihoul, and J. Ward, eds., Elsevier Applied Science, London, 1985, pp. 267–76.

    Google Scholar 

  25. D.J. Powell, R. Pilkington, and D.A. Miller: Acta Metall., 1988, vol. 36, pp. 713–24.

    Article  CAS  Google Scholar 

  26. D. Satyanarayana, G. Malakondaiah, and D. Sarma: Mater. Charact., 2001, vol. 47, pp. 61–65.

    Article  CAS  Google Scholar 

  27. D. Satyanarayana, G. Malakondaiah, and D. Sarma: Mater. Sci. Eng., A, 2002, vol. 323, pp. 119–28.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank E.P. George, C.T. Liu, and J.H. Schneibel for helpful comments on this manuscript. This work was funded by the United States Department of Energy (USDOE) Fossil Energy Advanced Research Materials program. The Oak Ridge National Laboratory is managed by UT–Battelle, LLC (Oak Ridge, TN), for the USDOE under Contract No. DE-AC05-00OR22725. The authors also acknowledge the SHaRE User Facility at the Oak Ridge National Laboratory, sponsored by the USDOE Office of Basic Energy Sciences, Division of Scientific User Facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.P. Brady.

Additional information

Manuscript submitted August 26, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, Y., Santella, M., Brady, M. et al. Effect of Alloying Additions on Phase Equilibria and Creep Resistance of Alumina-Forming Austenitic Stainless Steels. Metall Mater Trans A 40, 1868–1880 (2009). https://doi.org/10.1007/s11661-009-9886-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9886-1

Keywords

Navigation