Skip to main content
Log in

Probing the Characteristic Deformation Behaviors of Transformation-Induced Plasticity Steels

  • Symposium: Neutron and X-Ray Studies for Probing Materials Behavior
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The characteristic micromechanical behaviors of contrasting transformation-induced plasticity (TRIP) steels were investigated under tensile loading by in-situ neutron diffraction and transmission electron microscopy in detail. As demonstrated by the lattice strain development from the neutron diffraction, in the TRIP steel with ∼10 pct RA, microyielding of soft ferrite was responsible for the first stress partition, but a second stress sharing was caused by effective martensitic transformation. In the TRIP steel with less than 5 pct RA, where the contribution from the martensitic transformation was minor, stress partition took place virtually between the ferrite and bainite phase. Probing with systematic transmission electron microscopy (TEM) observations, we pin down the inherent correlation between the microstructural evolutions and the stress partition mechanism. Based on the experimental observations, the factors influencing the work-hardening behavior of TRIP steels are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Mahieu, J. Maki, B.C. De Cooman, and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2573–80

    Article  CAS  Google Scholar 

  2. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2442–54

    Article  CAS  Google Scholar 

  3. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Acta Mater., 2007, vol. 55, pp. 6713–23

    Article  CAS  Google Scholar 

  4. X.D. Wang, B.X. Huang, L. Wang, and Y.H. Rong: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1–7

    Article  CAS  Google Scholar 

  5. P.J. Jacques, Q. Furnemont, S. Godet, T. Pardoen, K.T. Conlon, and F. Delannay: Phil. Mag., 2006, vol. 86, pp. 2371–92

    Article  CAS  Google Scholar 

  6. P.J. Jacques: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 259–65

    Article  CAS  Google Scholar 

  7. M.A. Meyers, and K.K. Chawla: Mechanical Metallurgy: Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984, p. 355

    Google Scholar 

  8. P.J. Jacques, Q. Furnemont, F. Lani, T. Pardoen, and F. Delannay: Acta Mater., 2007, vol. 55, pp. 3681–93

    Article  CAS  Google Scholar 

  9. H.K.D.H. Bhadeshia: ISIJ Int., 2002, vol. 42, pp. 1059–60

    Article  CAS  Google Scholar 

  10. P.J. Jacques, J. Ladrière, and F. Delannay: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2759–68

    Article  CAS  Google Scholar 

  11. D. Wu, and Z. Li: ISIJ Int., 2006, vol. 46, pp. 1059–66

    Article  CAS  Google Scholar 

  12. W.C. Jeong, D.K. Matlock, and G. Krauss: Mater. Sci. Eng. A, 1993, vol. 165, pp. 1–8

    Article  Google Scholar 

  13. H. Su, W.D. Gunawadarna, A. Tuling, and B. Mintz: Mater. Sci. Technol., 2007, vol. 23, pp. 1357–66

    Article  CAS  Google Scholar 

  14. F. Perrard, and C. Scott: ISIJ Int., 2007, vol. 47, pp. 1168–77

    Article  CAS  Google Scholar 

  15. N. Jia, R.L. Peng, Y.D. Wang, G.C. Chai, S. Johansson, G. Wang, and P.K. Liaw: Acta Mater., 2006, vol. 54, pp. 3907–16

    Article  CAS  Google Scholar 

  16. D.K. Balch, and D.C. Dunand: Acta Mater., 2006, vol. 54, pp. 1501–11

    Article  CAS  Google Scholar 

  17. M.A.M. Bourke, R. Vaidyanathan, and D.C. Dunand: Appl. Phys. Lett., 1996, vol. 69, pp. 2477–79

    Article  CAS  Google Scholar 

  18. P. Sittner, P. Lukáš, V. Novak, M.R. Daymond, and G.M. Swallowe: Mater. Sci. Eng. A, 2004, vol. 378, pp. 97–104

    Article  CAS  Google Scholar 

  19. S. Wroński, A. Baczmański, R. Dakhlaoui, C. Braham, K. Wierzbanowski, and E.C. Oliver: Acta Mater., 2007, vol. 55, pp. 6219–33

    Article  CAS  Google Scholar 

  20. M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, and D.C. Dunand: Acta Mater., 2007, vol. 55, pp. 1999–2011

    Article  CAS  Google Scholar 

  21. G.J. Fan, L.F. Fu, Y.D. Wang, Y. Ren, H. Choo, P.K. Liaw, G.Y. Wang, and N.D. Browning: Appl. Phys. Lett., 2006, vol. 89, pp. 101918–101920

    Article  CAS  Google Scholar 

  22. K.X. Tao, J.J. Wall, H.Q. Li, D.W. Brown, S.C. Vogel, and H. Choo: J. Appl. Phys., 2006, vol. 100, pp. 1235151–57

    Google Scholar 

  23. J. Zrník, O. Stejskal, Z. Nový, P. Hornak, and M. Fujda: Mater. Sci. Eng. A, 2007, vol. 462, pp. 253–58

    Article  CAS  Google Scholar 

  24. O. Muránsky, P. Lukáš, J. Zrník, and P. Sittner: Physica B, 2006, vol. 385, pp. 587–89

    Article  CAS  Google Scholar 

  25. W. Bleck, and I. Schael: Steel Res., 2000, vol. 71, pp. 173–78

    CAS  Google Scholar 

  26. K. Tao, H. Choo, H. Li, B. Clausen, J.E. Jin, and Y.K. Lee: Appl. Phys. Lett., 2007, vol. 90, pp. 1019111–13

    Article  CAS  Google Scholar 

  27. E.C. Oliver, P.J. Withers, M.R. Daymond, S. Ueta, and T. Mori: Appl. Phys. A, 2002, vol. 74, pp. 1143–45

    Article  CAS  Google Scholar 

  28. H.N. Han, C.G. Lee, C.S. Oh, T.H. Lee, and S.J. Kim: Acta Mater., 2004, vol. 52, pp. 5203–14

    Article  CAS  Google Scholar 

  29. A.C. Larson and R.B. von Dreele: LAUR 86-748 Report, Los Alamos National Laboratory, Los Alamos, NM, 1986

  30. H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65–71

    Article  CAS  Google Scholar 

  31. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, and Y. Morii: Acta Mater., 2004, vol. 52, pp. 5737–45

    Article  CAS  Google Scholar 

  32. J. Zrník, O. Muránsky, P. Lukáš, P. Sittner, and Z. Nový: Mater. Sci. Forum, 2005, vol. 502, pp. 339–44

    Article  Google Scholar 

  33. R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand: Acta Metall., 1999, vol. 47, pp. 3353–66

    CAS  Google Scholar 

  34. J. Huang, S.C. Vogel, W.J. Poole, M. Militzer, and P.J. Jacques: Acta Mater., 2007, vol. 55, pp. 2683–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF Major Research Instrumentation (MRI) Program (Grant No. DMR-0421219) and the NSF International Materials Institutes (IMI) program (Grant No. DMR-0231320). One of the authors (XLW) acknowledges support by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, United States Department of Energy, under Contract No. DE-AC05-00OR22725 with UT–Battelle, LLC. This research was sponsored by the United States Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle Technologies, as part of the Automotive Light Weighting Materials Program, under Contract No. DE-AC05-00OR22725 with UT–Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Cheng.

Additional information

This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies for Probing Materials Behavior,” which occurred during the TMS Spring Meeting in New Orleans, LA, March 9–13, 2008, under the auspices of the National Science Foundation, TMS, the TMS Structural Materials Division, and the TMS Advanced Characterization, Testing, and Simulation Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, S., Wang, XL., Feng, Z. et al. Probing the Characteristic Deformation Behaviors of Transformation-Induced Plasticity Steels. Metall Mater Trans A 39, 3105–3112 (2008). https://doi.org/10.1007/s11661-008-9604-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9604-4

Keywords

Navigation