Skip to main content

Advertisement

Log in

On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (25 °C to 1300 °C)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The need for structural materials with high-temperature strength and oxidation resistance coupled with adequate lower-temperature toughness for potential use at temperatures above ∼1000 °C has remained a persistent challenge in materials science. In this work, one promising class of intermetallic alloys is examined, namely, boron-containing molybdenum silicides, with compositions in the range Mo (bal), 12 to 17 at. pct Si, 8.5 at. pct B, processed using both ingot (I/M) and powder (P/M) metallurgy methods. Specifically, the oxidation (“pesting”), fracture toughness, and fatigue-crack propagation resistance of four such alloys, which consisted of ∼21 to 38 vol. pct α-Mo phase in an intermetallic matrix of Mo3Si and Mo5SiB2 (T2), were characterized at temperatures between 25 °C and 1300 °C. The boron additions were found to confer improved “pest” resistance (at 400 °C to 900 °C) as compared to unmodified molybdenum silicides, such as Mo5Si3. Moreover, although the fracture and fatigue properties of the finer-scale P/M alloys were only marginally better than those of MoSi2, for the I/M processed microstructures with coarse distributions of the α-Mo phase, fracture toughness properties were far superior, rising from values above 7 MPa √m at ambient temperatures to almost 12 MPa √m at 1300 °C. Similarly, the fatigue-crack propagation resistance was significantly better than that of MoSi2, with fatigue threshold values roughly 70 pct of the toughness, i.e., rising from over 5 MPa √m at 25 °C to ∼8 MPa √m at 1300 °C. These results, in particular, that the toughness and cyclic crack-growth resistance actually increased with increasing temperature, are discussed in terms of the salient mechanisms of toughening in Mo-Si-B alloys and the specific role of microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Akinc, M.K. Meyer, M.J. Kramer, A.J. Thom, J.J. Huebsch, and B. Cook: Mater. Sci. Eng. A, 1999, vol. 261, pp. 16–23.

    Article  Google Scholar 

  2. M.M. Meyer, M.J. Kramer, and M. Akinc: Intermetallics, 1996, vol. 4, pp. 273–81.

    Article  CAS  Google Scholar 

  3. J.H. Schneibel, D.S. Easton, H. Choe, and R.O. Ritchie: Proc. 3rd Int. Symp. on Structural Intermetallics, Jackson Hole, WY, 2001.

  4. K.T. Venkateswara Rao, W.O. Soboyejo, and R.O. Ritchie: Metall. Trans. A, 1992, vol. 23A, pp. 2249–57.

    CAS  Google Scholar 

  5. J.H. Schneibel, C.T. Liu, L. Heatherly, and M.J. Kramer: Scripta Mater., 1998, vol. 38, pp. 1169–76.

    Article  CAS  Google Scholar 

  6. J.H. Schneibel, M.J. Kramer, Ö Ünal, and R.N. Wright: Intermetallics, 2001, vol. 9, pp. 25–31.

    Article  CAS  Google Scholar 

  7. H. Choe, D. Chen, J.H. Schneibel, and R.O. Ritchie: Intermetallics, 2001, vol. 9, pp. 319–29.

    Article  CAS  Google Scholar 

  8. J.B. Berkowitz-Mattuck, M. Rossetti, and D.W. Lee: Metall. Trans., 1970, vol. 1, pp. 479–83.

    CAS  Google Scholar 

  9. P.J. Meschter: Metall. Trans. A, 1992, vol. 23A, pp. 1763–72.

    CAS  Google Scholar 

  10. K. Natesan and S.C. Deevi: Intermetallics, 2000, vol. 8 (9–11), pp. 1147–58.

    Article  CAS  Google Scholar 

  11. D.M. Berczik: U.S. Patent No. 5,595,616 and 5, 693, 156, United Technologies Corp., East Hartford, CT, 1997.

  12. M.K. Meyer and M. Akinc: J. Am. Ceram. Soc., 1996, vol. 79, pp. 938–44.

    Article  CAS  Google Scholar 

  13. M.M. Meyer and M. Akinc: J. Am. Ceram. Soc., 1996, vol. 79, pp. 2763–66.

    Article  CAS  Google Scholar 

  14. M.K. Meyer, A.J. Thom, and M. Akinc: Intermetallics, 1999, vol. 7, pp. 153–62.

    Article  CAS  Google Scholar 

  15. T. Maruyama and K. Yanagihara: Mater. Sci. Eng. A, 1997, vols. 239–240, pp. 828–41.

    Google Scholar 

  16. T.A. Parthasarathy, M.G. Mendiratta, and D. Dimiduk: Acta Mater., 2002, vol. 50, pp. 1857–68.

    Article  CAS  Google Scholar 

  17. X. Fan and T. Ishigaki: J. Am. Ceram. Soc., 1999, vol. 82, p. 1965.

    Article  CAS  Google Scholar 

  18. J.S. Park, R. Sakidja, and J.H. Perpezko: Scripta Mater., 2002, vol. 46, pp. 765–70.

    Article  CAS  Google Scholar 

  19. N.S. Stoloff: Mater. Sci. Eng. A, 1999, vol. 261, pp. 169–80.

    Article  Google Scholar 

  20. Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1998, vol. 3.01.

  21. R.H. Dauskardt and R.O. Ritchie: Closed Loop, 1989, vol. 17, pp. 7–17.

    Google Scholar 

  22. C.J. Gilbert, J.M. McNaney, R.H. Dauskardt, and R.O. Ritchie: ASTM J. Test. Eval., 1994, vol. 22, pp. 117–20.

    Google Scholar 

  23. D. Chen, C.J. Gilbert, and R.O. Ritchie: ASTM J. Test. Eval., 2000, vol. 28, pp. 236–41.

    CAS  Google Scholar 

  24. D. Chen, C.J. Gilbert, X.F. Zhang, and R.O. Ritchie: Acta Mater., 2000, vol. 48, pp. 659–74.

    Article  CAS  Google Scholar 

  25. M.G. Mendiratta, T.A. Parthasarathy, and D.M. Dimiduk: Intermetallics, 2002, vol. 10, pp. 225–32.

    Article  CAS  Google Scholar 

  26. J. Schlichting: J. Non-Cryst. Solids, 1984, vol. 63, pp. 173–81.

    Article  CAS  Google Scholar 

  27. J.H. Schneibel: Proc. 16th Annual Conf. on Fossil Energy Materials, Session IV, National Energy Technology Laboratory (NETL) Publications, Washington, DC, 2002.

    Google Scholar 

  28. T.E. Tietz and J.W. Wilson: Behavior and Properties of Refractory Metals, Stanford University Press, Stanford, CA, 1965.

    Google Scholar 

  29. A.Y. Koval, A.D. Vasilev, and S.A. Firstov: Int. J. Refract. Met. Hard Mater., 1997, vol. 15, pp. 223–26.

    Article  CAS  Google Scholar 

  30. R.O. Ritchie and W. Yu: in Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS, Warrendale, PA, 1986, pp. 167–89.

    Google Scholar 

  31. R.O. Ritchie: Mater. Sci. Eng., 1988, vol. 103, pp. 15–28.

    Article  Google Scholar 

  32. R.O. Ritchie: Int. J. Fracture, 1999, vol. 100, pp. 55–83.

    Article  CAS  Google Scholar 

  33. R.O. Ritchie and R.H. Dauskardt: J. Ceram. Soc. Jpn., 1991, vol. 99, pp. 1047–62.

    CAS  Google Scholar 

  34. K.T. Venkateswara Rao, G.R. Odette, and R.O. Ritchie: Acta Metall. Mater., 1994, vol. 42, pp. 893–911.

    Article  CAS  Google Scholar 

  35. K. Badrinarayanan, A.L. McKelvey, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3781–92.

    Article  CAS  Google Scholar 

  36. L. Murugesh, K.T. Venkateswara Rao, and R.O. Ritchie: Scripta Metall. Mater., 1993, vol. 29, pp. 1107–12.

    Article  CAS  Google Scholar 

  37. A.F. Bower and M. Ortiz: J. Mech. Phys. Solids, 1991, vol. 39, pp. 815–58.

    Article  Google Scholar 

  38. J.K. Shang and R.O. Ritchie: Acta Metall., 1989, vol. 38, pp. 2267–78.

    Google Scholar 

  39. F.E. Heredia, M.Y. He, G.E. Lucas, A.G. Evans, H.E. Dève, and D. Konitzer: Acta Metall. Mater., 1993, vol. 41, pp. 505–11.

    Article  CAS  Google Scholar 

  40. P. Ramasundaram, R. Bowman, and W. Soboyejo: Mater. Sci. Eng. A, 1998, vol. 248, pp. 132–46.

    Article  Google Scholar 

  41. K.S. Chan and D.L. Davidson: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2717–27.

    CAS  Google Scholar 

  42. D.L. Davidson, K.S. Chan, and D.L. Anton: Metall. Mater. Trans. A, 1996, vol. 27, pp. 3007–18.

    Google Scholar 

  43. H.E. Dève, A.G. Evans, G.R. Odette, R. Mehrabian, M.L. Emiliani, and R.J. Hecht: Acta Metall. Mater., 1990, vol. 38, pp. 1491–1502.

    Article  Google Scholar 

  44. G.R. Odette, B.L. Chao, J.W. Sheckherd, and G.E. Lucas: Acta Metall. Mater., 1992, vol. 40, pp. 2381–89.

    Article  CAS  Google Scholar 

  45. K.S. Chan: Metall. Trans. A, 1992, vol. 23A, pp. 183–99.

    CAS  Google Scholar 

  46. R.W. Hall and P.F. Sikora: NASA Memo 3-9-59E, NASA, Washington, DC, 1959.

    Google Scholar 

  47. J.H. Schneibel, C.T. Liu, D.S. Easton, and C.A. Carmichael: Mater. Sci. Eng. A, 1999, vol. A261, pp. 78–83.

    CAS  Google Scholar 

  48. C.J. Rawn, J.H. Schneibel, C.M. Hoffman, and C.J. Hubbard: Intermetallics, 2001, vol. 9, pp. 209–16.

    Article  CAS  Google Scholar 

  49. R.G. Hoagland and J.D. Embury: J. Am. Ceram. Soc., 1980, vol. 63, pp. 404–10.

    Article  CAS  Google Scholar 

  50. J.W. Hutchinson: Acta Metall., 1987, vol. 35, pp. 1605–19.

    Article  CAS  Google Scholar 

  51. N. Claussen and J. Steeb: J. Am. Ceram. Soc., 1976, vol. 59, pp. 457–58.

    Article  CAS  Google Scholar 

  52. N. Claussen: J. Am. Ceram. Soc., 1976, vol. 59, pp. 49–51.

    Article  CAS  Google Scholar 

  53. A.G. Evans and K.T. Faber: J. Am. Ceram. Soc., 1984, vol. 67, pp. 255–60.

    Article  Google Scholar 

  54. A.G. Evans and Y. Fu: Acta Metall., 1985, vol. 33, pp. 1525–31.

    Article  Google Scholar 

  55. A.G. Evans: J. Am. Ceram. Soc., 1990, vol. 73, pp. 187–206.

    Article  CAS  Google Scholar 

  56. A.A. Rubinstein: Int. J. Fracture, 1985, vol. 27, pp. 113–19.

    Google Scholar 

  57. G. Liu, D. Zhu, and J.K. Shang: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 159–66.

    CAS  Google Scholar 

  58. L.S. Sigl: Acta Mater., 1996, vol. 44, pp. 3599–3609.

    Article  CAS  Google Scholar 

  59. J. Gurland: Trans. TMS-AIME, 1958, vol. 212, p. 452.

    CAS  Google Scholar 

  60. Z. Fan, A.P. Miodownik, and P. Tsakiropoulos: Mater. Sci. Technol., 1993, vol. 9, pp. 1094–1100.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choe, H., Schneibel, J.H. & Ritchie, R.O. On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (25 °C to 1300 °C). Metall Mater Trans A 34, 225–239 (2003). https://doi.org/10.1007/s11661-003-0325-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0325-4

Keywords

Navigation