Skip to main content
Log in

Root cryopreservation to biobank medicinal plants: a case study for Hypericum perforatum L.

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

In this study, an effective root-based cryopreservation method was developed for Hypericum perforatum L., an important medicinal species, using in vitro plants. A systematic approach was applied to determine effective combinations of protocol steps such as preculture, osmoprotection, vitrification solution treatment, and unloading, followed by protocol optimization using a single-factor approach. The effects of root section type (root tips, middle sections, or basal sections), duration of root section culture after excision, and donor plant age were also investigated. In a wild genotype, middle and basal root sections excised from 8-wk-old plants and cryopreserved at the age of 10 d after excision showed the highest plant regrowth after cryopreservation. In the optimized protocol, root sections were precultured in 10% (w/v) sucrose for 17 h, osmoprotected with a solution composed of 17.5% (w/v) glycerol and 17.5% (w/v) sucrose for 20 min, followed by a vitrification solution of 40% (w/v) glycerol and 40% (w/v) sucrose for 30 min, and cryopreserved using aluminum foil strips (droplet-vitrification). After rewarming in preheated 25% (w/v) sucrose solution and 30-min unloading, root segments were recovered on medium supplemented with 1.0 mg L−1 gibberellic acid and showed 78% plant regrowth. This cryopreservation method was successfully adapted for five elite lines of H. perforatum with a 45 to 87% regrowth rate after cryopreservation. These results suggest that root cryopreservation may be an effective method for medicinal plant conservation and should be tested with a broader range of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Alan AR, Murch SJ, Saxena PK (2015) Evaluation of ploidy variations in Hypericum perforatum L. (St. John’s wort) germplasm from seeds, in vitro germplasm collection, and regenerants from floral cultures. In Vitro Cell Dev Biol–Plant 51:452–462

    Article  CAS  Google Scholar 

  • Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 30:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Benson EE, Hamill JD (1991) Cryopreservation and post freeze molecular and biosynthetic stability in transformed roots of Beta vulgaris and Nicotiana rustica. Plant Cell Tissue Organ Cult 24:163–171

    Article  CAS  Google Scholar 

  • Brasili E, Miccheli A, Marini F, Praticò G, Sciubba F, Di Cocco ME, Filho Cechinel V, Tocci N, Valletta A, Pasqua G (2016) Metabolic profile and root development of Hypericum perforatum L. in vitro roots under stress conditions due to chitosan treatment and culture time. Front Plant Sci 7:507

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruňáková K, Zámečník J, Urbanová M, Čellárová E (2011) Dehydration status of ABA-treated and cold-acclimated Hypericum perforatum L. shoot tips subjected to cryopreservation. Thermochim Acta 525:62–70

    Article  CAS  Google Scholar 

  • Choi CH, Popova EV, Lee H, Park SU, Ku J, Kang JH, Kim HH (2019) Cryopreservation of endangered wild species, Aster altaicus var. uchiyamae Kitam, using droplet-vitrification procedure. CryoLetters 40:113–122

    PubMed  Google Scholar 

  • Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716

    Article  CAS  PubMed  Google Scholar 

  • Erland LAE, Shukla MR, Singh AS, Murch SJ, Saxena PK (2018) Melatonin and serotonin: mediators in the symphony of plant morphogenesis. J Pineal Res 64:e12452

    Article  CAS  Google Scholar 

  • Escobar RH, Muñoz L, Rios A, Núñez A, Tohme J (2014) Using a droplet-vitrification method to partially overcome the recalcitrance of cassava to cryostorage. Proc IInd IS on Plant Cryopreserv Acta Hortic 1039:227–232

    Article  Google Scholar 

  • Gaid M, Haas P, Beuerle T, Scholl S, Beerhues L (2016) Hyperforin production in Hypericum perforatum root cultures. J Biotechnol 222:47–55

    Article  CAS  PubMed  Google Scholar 

  • González-Benito ME, Martín C (2011) In vitro preservation of Spanish biodiversity. In Vitro Cell Dev Biol-Plant 47:46–54

    Article  Google Scholar 

  • Hahn EJ, Kim YS, Yu KW, Jeong CS, Paek KY (2003) Adventitious root cultures of Panax ginseng C.A. Meyer and ginsenoside production through large-scale bioreactor system. J Plant Biotechnol 5:1–6

    Google Scholar 

  • Hatanaka J, Shinme Y, Kuriyama K, Uchidaa KK, Uchida S, Yamada S, Onoue S (2011) In vitro and in vivo characterization of new formulations of St. John’s wort extract with improved pharmacokinetics and anti-nociceptive effect. Drug Metab Pharmacokinet 26:551–558

    Article  CAS  PubMed  Google Scholar 

  • Jenderek MM, Reed BM (2017) Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. In Vitro Cell Dev Biol–Plant 53:299–308

    Article  CAS  Google Scholar 

  • Jung D-W, Sung CK, Touno K, Yoshimatsu K, Shimomura K (2001) Cryopreservation of Hyoscyamus niger adventitious roots by vitrification. J Plant Physiol 158:801–805

    Article  CAS  Google Scholar 

  • Kim HH, Lee YG, Park SU, Lee SC, Baek HJ, Cho EG, Engelmann F (2009a) Development of alternative loading solutions in droplet-vitrification procedures. CryoLetters 30:291–299

    CAS  PubMed  Google Scholar 

  • Kim HH, Lee YG, Shin DJ, Ko HC, Gwag JG, Cho EG, Engelmann F (2009b) Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters 30:320–334

    CAS  PubMed  Google Scholar 

  • Kim HH, Popova EV, Yi JY, Cho GT, Park SU, Lee SC, Engelmann F (2010) Cryopreservation of hairy roots of Rubia akane (Nakai) using a droplet-vitrification procedure. CryoLetters 31:473–484

  • Kim HH, Popova E, Shin DJ, Yi JY, Kim CH, Lee JS, Yoon MK, Engelmann F (2012a) Cryobanking of Korean Allium germplasm collections: results from a 10 year experience. CryoLetters 33:45–57

    CAS  PubMed  Google Scholar 

  • Kim HH, Popova EV, Shin DJ, Bae CH, Baek HJ, Park SU, Engelmann F (2012b) Development of a droplet-vitrification protocol for cryopreservation of Rubia akane (Nakai) hairy roots using a systematic approach. CryoLetters 33:506–517

    CAS  PubMed  Google Scholar 

  • Lambert E, Geelen D (2007) Cryopreservation of hairy root cultures from Maesa lanceolata. Commun Agric Appl Biol Sci 72:225–228

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2006) A melatonin-rich germplasm line of St John’s wort (Hypericum perforatum L.). J Pineal Res 41:284–287

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Vasantha Rupasinghe HP, Saxena PK (2002) An in vitro and hydroponic growing system for hypericin, pseudohypericin, and hyperforin production of St. John’s Wort (Hypericum perforatum cv New Stem). Planta Med 68:1108–1112

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa S, Sakai A, Amano AY, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  • Oh SY, Wu CH, Popova E, Hahn EJ, Paek KY (2009) Cryopreservation of Panax ginseng adventitious roots. J Plant Biol 52:348–354

    Article  CAS  Google Scholar 

  • Pence VC (2010) The possibilities and challenges of in vitro methods for plant conservation. Kew Bull 65:539–547

    Article  Google Scholar 

  • Pence VC (2014) In vitro methods and cryopreservation: tools for endangered exceptional species preservation and restoration. Acta Hortic 1039:73–79

    Article  Google Scholar 

  • Petijová L, Skyba M, Cellárová E (2012) Genotype-dependent response of St. John’s wort (Hypericum perforatum L.) shoot tips to cryogenic treatment: effect of pre-culture conditions on post-thaw recovery. Plant Omics J 5:291–297

    Google Scholar 

  • Popova EV, Paek KY, Kim HH (2011) Cryopreservation of medicinal plants: the case of in vitro cultures. In: Kumar A, Roy S (eds) Plant tissue culture and applied plant biotechnology. Pointer publishers, Jaipur, pp 153–196

    Google Scholar 

  • Popova E, Shukla M, Kim HH, Saxena PK (2015) Plant cryopreservation for biotechnology and breeding. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer International Publishing, Berlin, pp 63–93

    Chapter  Google Scholar 

  • Rathwell R, Popova E, Shukla MR, Saxena PK (2016) Development of cryopreservation methods for cherry birch (Betula lenta L.), an endangered tree species in Canada. Can J For Res 46:1–9

    Article  CAS  Google Scholar 

  • Salama A, Popova E, Jones MP, Shukla MR, Fisk NS, Saxena PK (2018) Cryopreservation of the critically endangered golden paintbrush (Castilleja levisecta Greenm.): from nature to cryobank to nature. In Vitro Cell Dev Biol–Plant 54:69–78

    Article  CAS  Google Scholar 

  • Salma M, Engelmann-Sylvestre I, Collin M, Escoute J, Lartaud M, Yi JY, Kim HH, Verdeil JL, Engelmann F (2014) Effect of the successive steps of a cryopreservation protocol on the structural integrity of Rubia akane Nakai hairy roots. Protoplasma 251:649–659

    Article  CAS  PubMed  Google Scholar 

  • Shohael AM, Murthy HN, Hahn EJ, Lee HL, Paek KY (2008) Increased eleutheroside production in Eleutherococcus sessiliflorus embryogenic suspension cultures with methyl jasmonate treatment. Biochem Eng J 38:270–273

    Article  CAS  Google Scholar 

  • Skyba M, Urbanová M, Kapchina-Toteva V, Košuth J, Harding K, Čellárová E (2010) Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. CryoLetters 31:249–260

    CAS  PubMed  Google Scholar 

  • Teoh KH, Weathers PJ, Cheetham RD, Walcerz DB (1996) Cryopreservation of transformed (hairy) roots of Artemisia annua. Cryobiology 33:106–117

    Article  CAS  PubMed  Google Scholar 

  • Uchendu EE, Shukla MR, Reed BM, Saxena PK (2014) An efficient method for cryopreservation of St John’s wort and tobacco: role of melatonin. Proc IInd IS on Plant Cryopreservation. Acta Hortic 1039:233–242

    Article  Google Scholar 

  • Vollmer R, Villagaray R, Egúsquiza V, Espirilla J, García M, Torres A, Rojas E, Panta A, Barkley NA, Ellis D (2016) The potato cryobank at the international potato center (CIP): a model for long term conservation of clonal plant genetic resources collections of the future. CryoLetters 5:318–329

    Google Scholar 

  • Wang B, Wang RR, Cui ZH, Bi WL, Li JW, Li BQ, Ozudogru EA, Volk GM, Wang QC (2014) Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnol Adv 32:583–595

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Tewari RK, Hahn EJ, Paek KY (2007) Nitric oxide elicitation induces the accumulation of secondary metabolites and antioxidant defense in adventitious roots of Echinacea purpurea. J Plant Biol 50:636–643

    Article  CAS  Google Scholar 

  • Xue SH, Luo XJ, Wu ZH, Zhang HL, Wang XY (2008) Cold storage and cryopreservation of hairy root cultures of medicinal plant Eruca sativa Mill., Astragalus membranaceus and Gentiana macrophylla Pall. Plant Cell Tissue Organ Cult 92:251–260

    Article  Google Scholar 

Download references

Funding

The authors gratefully recognize the financial support of the Gosling Foundation to the Gosling Research Institute of Plant Preservation (GRIPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen K. Saxena.

Additional information

Editor: Barbara Reed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Popova, E., Shukla, M.R. et al. Root cryopreservation to biobank medicinal plants: a case study for Hypericum perforatum L.. In Vitro Cell.Dev.Biol.-Plant 55, 392–402 (2019). https://doi.org/10.1007/s11627-019-09999-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-019-09999-x

Keywords

Navigation