Skip to main content
Log in

A CO2-enriched atmosphere improves in vitro growth of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]

  • Physiology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the effects of forced ventilation and CO2 enrichment (360 or 720 μmol mol−1 CO2) on the in vitro growth and development of Pfaffia glomerata, an endangered medicinal species, under photomixotrophic or photoautotrophic conditions. P. glomerata nodal segments showed substantial differences in growth, relative water content and water loss from leaves, photosynthetic pigments, stomatal density, and leaf anatomical characteristics under these different treatments. CO2 enrichment led to increased photosynthetic pigments and reduced stomatal density of in vitro cultivated P. glomerata. A lack of sucrose in the culture medium increased 20-hydroxyecdysone levels, but the increase in CO2 levels did not further elevate the accumulation of 20-hydroxyecdysone. All growth increased in a CO2-enriched atmosphere. In addition, CO2 enrichment, with or without sucrose, gave a lower relative water loss from leaves. This finding indicates that either a photoautotrophic or photomixotrophic system in a CO2-enriched atmosphere may be suitable for large-scale propagation of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Arigita L, Canãl J, Tamés RS, González A (2010) CO2-enriched microenvironment affects sucrose and macronutrients absorption and promotes autotrophy in the in vitro culture of kiwi (Actinidia deliciosa Chev. Liang and Ferguson). In Vitro Cell Dev Biol-Plant 46:312–322

    Article  CAS  Google Scholar 

  • Badr A, Angers P, Desjardins Y (2011) Metabolic profiling of photoautotrophic and photomixotrophic potato plantlets (Solanum tuberosum) provides new insights into acclimatization. Plant Cell Tiss Org Cult 107:13–24

    Article  CAS  Google Scholar 

  • Cha-um S, Chanseetis C, Chintakovid W, Pichakum A, Supaibulwatana K (2011) Promoting root induction and growth of in vitro macadamia (Macadamia tetraphylla L. ‘Keaau’) plantlets using CO2-enriched photoautotrophic conditions. Plant Cell Tiss Org Cult 106:435–444

    Article  CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Müller R (2008) In vitro culture of Hibiscus rosa-sinensis L.: influence of iron, calcium and BAP on establishment and multiplication. Plant Cell Tiss Org Cult 93:151–161

    Article  CAS  Google Scholar 

  • Couceiro MA, Afreen F, Zobayed SMA, Kozai T (2006) Enhanced growth and quality of St. John’s wort (Hypericum perforatum L.) under photoautotrophic in vitro conditions. In Vitro Cell Dev Biol - Plant 42:278–282

    Article  Google Scholar 

  • Fernandes JFO, Brito LC, Frydman JNG, Santos-Filho SD, Bernardo-Filho M (2005) An aqueous extract of Pfaffia sp. does not alter the labeling of blood constituents with technetium-99m and the morphology of the red blood cells. Rev Bras Farmacogn 15:126–132

    Article  Google Scholar 

  • Ferris R, Sabatti M, Miglietta F, Mills RF, Taylor G (2001) Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. Plant Cell Environ 24:305–315

    Article  CAS  Google Scholar 

  • Festucci-Buselli RA, Contim LAS, Barbosa LCA, Stuart JJ, Otoni WC (2008) Biosynthesis and potential functions of the ecdysteroid 20-hydroxyecdysone—a review. Botany 86:978–987

    Article  CAS  Google Scholar 

  • Flores R, Brondani D, Cezarotto V, Giacomelli SR, Nicoloso FT (2010) Micropropagation and β-ecdysone content of the Brazilian ginsengs Pfaffia glomerata and Pfaffia tuberosa. In Vitro Cell Dev Biol - Plant 4:210–217

    Article  Google Scholar 

  • Fujiwara K, Kozai T (1995) Physical microenvironment and its effects. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht, pp 319–369

    Chapter  Google Scholar 

  • González L, González-Vilar M (2001) Determination of relative water content. In: Roger MJR (ed) Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, Dordrecht, pp 207–212

    Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    Article  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  PubMed  CAS  Google Scholar 

  • Iarema L, Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Org Cult 110:227–238

    Article  Google Scholar 

  • Kamada T, Picoli EAT, Vieira RF, Barbosa LCA, Cruz CD, Otoni WC (2009) Variação de caracteres morfológicos e fisiológicos de populações naturais de Pfaffia glomerata (Spreng.) Pedersen e correlação com a produção de β-ecdisona. Rev Bras Plant Med 11:247–256

    Article  CAS  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kozai T (1991) Photoautotrophic micropropagation. In Vitro Cell Dev Biol-Plant 27:47–51

    Google Scholar 

  • Kozai T (2010) Photoautotrophic micropropagation—environmental control for promoting photosynthesis. Prop Ornam Plants 10:188–204

    Google Scholar 

  • Kozai T, Kubota C (2005) Concepts, definitions, ventilation methods, advantages and disadvantages. In: Kozai T, Afreen F, Zobayed SMA (eds) Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system. Springer, Dordrecht, pp 19–30

    Chapter  Google Scholar 

  • Kozai T, Xiao Y (2006) A commercialized photoautotrophic micropropagation system. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht, pp 355–371

    Chapter  Google Scholar 

  • Kubota C (2001) Concepts and background of photoautotrophic micropropagation. In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier, Amsterdam, pp 325–334

    Google Scholar 

  • Majada JP, Fal MA, Sanches-Tames R (1997) The effect of ventilation rate on proliferation and hyperhydricity of Dianthus caryophyllus L. In Vitro Cell Dev Biol - Plant 33:62–69

    Article  Google Scholar 

  • Maldaner J, Nicoloso FT, Santos ES, Flores R, Skrebsky EC (2006) Sacarose e nitrogênio na multiplicação in vitro de Pfaffia glomerata (Spreng.) Pedersen. Ciênc Rural 36:1201–1206

    Google Scholar 

  • Marchese JA, Ming LC, Ducatti C, Broetto F, Silva ET, Leonardo M (2006) Carbon isotope composition as a tool to control the quality of herbs and medicinal plants. Photosynthetica 44:155–159

    Article  CAS  Google Scholar 

  • Marchioretto MS, Miotto STS, Siqueira JC (2010) O gênero Pfaffia Mart. (Amaranthaceae) no Brasil. Hoehnea 37:461–511

    Article  Google Scholar 

  • Mendes FR (2011) Tonic, fortifier and aphrodisiac: adaptogens in the Brazilian folk medicine. Bras J Farmacogn 21:754–763

    Article  CAS  Google Scholar 

  • Mingozzi M, Montello P, Merkle S (2009) Adventitious shoot regeneration from leaf explants of eastern cottonwood (Populus deltoides) cultured under photoautotrophic conditions. Tree Physiol 29:333–343

    Article  PubMed  CAS  Google Scholar 

  • Mohamed MAH, Alsadon AA (2010) Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci Hortic 123:295–300

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nascimento EX, Mota JH, Vieira MC, Zárate NAH (2007) Produção de biomassa de Pfaffia glomerata (Spreng.) Pedersen e Plantago major L. em cultivo solteiro e consorciado. Ciênc Agrotecnol 31:724–730

  • Neto AG, Costa JMLC, Belati CC, Vinholis AHC, Possebom LS, Silva Filho AA, Cunha WR, Carvalho JCT, Bastos JK, Silva MLA (2005) Analgesic and anti-inflammatory activity of a crude root extract of Pfaffia glomerata (Spreng) Pedersen. J Ethnopharmcol 96:87–91

    Article  CAS  Google Scholar 

  • Neumann KH, Kumar A, Imani J (2009) Plant cell and tissue culture—a tool in biotechnology. Springer, Berlin

    Google Scholar 

  • Nguyen QT, Kozai T (2005) Photoautotrophic micropropagation of woody species. In: Kozai T, Afreen F, Zobayed SMA (eds) Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system. Springer, Dordrecht, pp 123–146

    Chapter  Google Scholar 

  • Nicoloso FT, Ferrão GE, Castro GY (2008) pH do meio de cultivo e crescimento de plântulas de ginseng brasileiro cultivadas in vitro. Ciênc Rural 38:2059–2062

    Google Scholar 

  • Norikane A, Takamura T, Morokuma M, Tanaka M (2010) In vitro growth and single-leaf photosynthetic response of Cymbidium plantlets to super-elevated CO2 under cold cathode fluorescent lamps. Plant Cell Rep 29:273–283

    Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termacarphi, Melbourne

    Google Scholar 

  • Paiva Neto VB, Otoni WC (2003) Carbon sources and their osmotic potential in plant tissue culture: does it matter? Sci Hortic 97:193–202

    Article  Google Scholar 

  • Park SY, Moon HK, Murthy HN, Kim YW (2011) Improved growth and acclimatization of somatic embryo-derived Oplopanax elatus plantlets by ventilated photoautotrophic culture. Biol Plant 55:559–562

    Article  Google Scholar 

  • Pinto JM, Botrel TA, Machado CE (2000) Uso de dióxido de carbono na agricultura. Ciênc Rural 30:919–925

    Article  Google Scholar 

  • Pospíšilová J, Synková H, Haisel D, Semorádová Š (2007) Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review). Acta Hortic 748:9–38

    Google Scholar 

  • Pott A, Pott VS (1994) Plantas do pantanal. Embrapa-SPI, Corumbá

    Google Scholar 

  • Pritchard S, Rogers HH, Prior SA, Peterson SM (1999) Elevated CO2 and plant structure: a review. Glob Change Biol 5:807–837

    Article  Google Scholar 

  • Reddy AR, Rasineni GK, Raghavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci 99:46–57

    CAS  Google Scholar 

  • Ribeiro APO, Picoli EAT, Lani ERG, Vendrame WA, Otoni WC (2009) The influence of flask sealing on in vitro morphogenesis of eggplant (Solanum melongena L.). In Vitro Cell Dev Biol - Plant 45:421–428

    Article  Google Scholar 

  • Russowski D, Nicoloso FT (2003) Nitrogênio e fósforo no crescimento de plantas de ginseng brasileiro. [Pfaffia glomerata (Spreng.) Pedersen cultivadas in vitro. Ciênc Rural 33:57–63

  • Rybczynski JJ, Borkowska B, Fiuk A, Gawronska H, Sliwinska E, Mikula A (2007) Effect of sucrose concentration on photosynthetic activity of in vitro cultures Gentiana kurroo (Royle) germilings. Acta Physiol Plant 29:445–453

    Article  CAS  Google Scholar 

  • Saldanha CW, Otoni CG, Azevedo JLF, Dias LLC, Rêgo MM, Otoni WC (2012) A low-cost alternative membrane system that promotes growth in nodal cultures of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Org Cult 110:413–422

    Article  CAS  Google Scholar 

  • Santos RP, Cruz ACF, Iarema L, Kuki KN, Otoni WC (2008) Protocolo para extração de pigmentos foliares em porta-enxertos de videira micropropagados. Rev Ceres 55:356–364

    CAS  Google Scholar 

  • Sarasan V, Kite GC, Sileshi GW, Stevenson PC (2011) Applications of phytochemical and in vitro techniques for reducing over-harvesting of medicinal and pesticidal plants and generating income for the rural poor. Plant Cell Rep 30:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute Inc. (2003) Statistical Analysis System user's guide. Version 9.1 ed. Cary.

  • Segatto FB, Bisognin DA, Benedetti M, Costa LC, Rampelotto MV, Nicoloso FT (2004) Técnica para o estudo da anatomia da epiderme foliar de batata. Ciênc Rural 34:1597–1601

    Article  Google Scholar 

  • Shimada T, Sugano SS, Hara-Nishimura I (2011) Positive and negative peptide signals control stomatal density. Cell Mol Life Sci 68:2081–2088

    Article  PubMed  CAS  Google Scholar 

  • Silva JAT, Giang DDT, Tanaka M (2006) Photoautotrophic micropropagation of Spathiphyllum. Photosynthetica 44:53–61

    Article  Google Scholar 

  • Skrebsky EC, Nicoloso FT, Maldaner J (2006) Substratos na aclimatização de Pfaffia glomerata (Spreng) Pedersen produzida in vitro sob diferentes doses de sacarose. Ciênc Rural 36:1416–1423

    Google Scholar 

  • Souza VC, Lorenzi H (2005) Botânica sistemática: guia ilustrado para identificação das famílias de Angiospermas da flora brasileira baseado em APG II. Instituto Plantarum, Nova Odessa, pp 220–223

    Google Scholar 

  • Vyas S, Purohit SD (2006) Effect of controlled carbon dioxide on in vitro shoot multiplication in Feronia limonia (L.) Swingle. Acta Physiol Plant 28:605–611

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Xiao Y, Kozai T (2006) In vitro multiplication of statice plantlets using sugar-free media. Sci Hortic 109:71–77

    Article  CAS  Google Scholar 

  • Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tiss Org Cult 105:149–158

    Article  CAS  Google Scholar 

  • Yoon YJ, Mobin M, Hahn EJ, Paek KY (2009) Impact of in vitro CO2 enrichment and sugar deprivation on acclimatory responses of Phalaenopsis plantlets to ex vitro conditions. Environ Exp Bot 65:183–188

    Article  CAS  Google Scholar 

  • Zobayed SMA (2005) Ventilation in micropropagation. In: Kozai T, Afreen F, Zobayed SMA (eds) Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system. Springer, Dordrecht, pp 147–186

    Chapter  Google Scholar 

  • Zobayed SMA, Afreen F, Kubota C, Kozai T (2000) Water control and survival of Ipomoea batatas grown photoautotrophically under forced ventilation and photomixotrophically under natural ventilation. Ann Bot 86:603–610

    Article  Google Scholar 

Download references

Acknowledgments

CWS received a post-doctoral fellowship from the Coordination for Enhancement of Higher Education Personnel (CAPES-PNPD). This work was also supported by the National Council for Scientific and Technological Development (CNPq; MCT/CNPq 480675/2009-0; PQ 303201/2010-0 to WCO) and a grant from the Minas Gerais State Research Foundation (FAPEMIG; CAG-APQ-01036-09). We also thank the Microscopy and Microanalysis Center at the Federal University of Viçosa, and to Dr. Roberto Fontes Vieira (EMBRAPACENARGEN, Brasília, Brazil) for making the accession of Pfaffia available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Campos Otoni.

Additional information

Editor: J. Finer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saldanha, C.W., Otoni, C.G., Notini, M.M. et al. A CO2-enriched atmosphere improves in vitro growth of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. In Vitro Cell.Dev.Biol.-Plant 49, 433–444 (2013). https://doi.org/10.1007/s11627-013-9529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9529-5

Keywords

Navigation