Skip to main content
Log in

Ultrastructural changes of Drosophila larval and prepupal salivary glands cultured in vitro with ecdysone

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Alterations in the ultrastructure of in vitro cultured larval salivary glands of Drosophila melanogaster in response to the steroid hormone ecdysone were studied in relation to complex changes in puffing patterns. We found that the changes in the fine structure of cultured glands reflected progression of the puffing pattern, and they paralleled those seen in vivo. We observed that glue secretion by exocytosis, the main function of salivary glands, took place between puff stage 5 (PS5) and PS7. Glue could not be expectorated under culture conditions but was slowly released from the lumen through a duct into the medium. After the cultured glands reached PS13/PS14, further progress of puffing and fine structural alterations required that the ecdysteroid titer be transiently extremely low or absent. Under in vitro conditions we did not observe the putative new secretory program(s) described for glands in vivo after PS12. However, ultrastructural changes which unambiguously indicated that an autohistolytic process had begun in vitro started to appear after PS17. Many salivary gland cells developed numerous features of progressive self-degradation between PS18 and PS21. Actual degradation of salivary glands in vivo seemed to be rapid, but in vitro degradation was never completed, probably due to a lack of exogenous factors from the hemolymph. Manipulations of ecdysone titer in vitro in the culture medium, known during the larval puffing cycle to cause premature induction of developmentally specific puffing patterns, did not affect the normal development of ultrastructural features of the cytoplasm and nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, A. J.; Fletcher, J. C.; Karim, F. D., et al. Molecular analysis of the initiation of insect metamorphosis: a comparative study of Drosophila ecdysteroid-regulated transcription. Dev. Biol. 160:388–404; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Andres, A. J.; Thummel, C. S. The Drosophila 63F early puffs contain E63-1, an ecdysone-inducible gene that encodes a novel Ca2+-binding protein. Development 121:2267–2679; 1995.

    Google Scholar 

  • Ashburner, M. Patterns of puffing activity in the salivary gland chromosomes of Drosophila melanogaster. I. Autosomal puffing patterns in a laboratory stock. Chromosoma 21:398–428; 1967.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, M. Patterns of puffing activity in the salivary gland chromosomes of Drosophila melanogaster. IV. Variability of puffing patterns. Chromosoma 27:156–177; 1969.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, M. Function and structure of polytene chromosomes during insect development. In: Beament, J. W. L.; Treherne, J. E.; Wigglesworth, V. B., ed. Advances in insect physiology. Vol. 7. New York and London: Academic Press; 1970:1–95.

    Google Scholar 

  • Ashburner, M. Induction of puffs in polytene chromosomes of in vitro cultured salivary glands of Drosophila melanogaster by ecdysone and ecdysone analogues. Nature 230:222–224; 1971.

    CAS  Google Scholar 

  • Ashburner, M. Puffing patterns in Drosophila melanogaster and related species. In: Beerman, W., ed. Developmental studies on giant chromosomes. Berlin, Heidelberg, New York: Springer-Verlag; 1972a:101–151. Ashburner, M. Patterns of puffing activity in the salivary gland chromosomes of Drosophila. VI. Induction by ecdysone in salivary glands of D. melanogaster cultured in vitro. Chromosoma 38:255–281; 1972b.

    Google Scholar 

  • Ashburner, M. Ecdysone induction of puffing in polytene chromosomes of Drosophila melanogaster. Effects of inhibitors of RNA synthesis. Exp. Cell Res. 71:433–440; 1972c.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, M. Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. I. Dependence upon ecdysone concentration. Dev. Biol. 35:47–61; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, M. Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. II. The effects of inhibitors of protein synthesis. Dev. Biol. 39:141–157; 1974.

    PubMed  CAS  Google Scholar 

  • Ashburner, M. Puffs, genes, and hormones revisited. Cell 61:1–3; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, M.; Berendes, H. D. 1978. Puffing of polytene chromosomes. In: Ashburner, M.; Wright, T. R. F., ed. The genetics and biology of Drosophila. Vol. 2b. London and New York: Academic Press; 1978:315–395.

    Google Scholar 

  • Ashburner, M.; Chihara, C.; Meltzer, P., et al. Temporal control of puffing activity in polytene chromosomes. Cold Spring Harbor Symp. Quant. Biol. 38:655–662; 1974.

    PubMed  CAS  Google Scholar 

  • Ashburner, M.; Richards, G. Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. III. Consequences of ecdysone withdrawal. Dev. Biol. 54:241–255; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Beckendorf, S. K.; Kafatos, F. C. Differentiation in the salivary glands of Drosophila melanogaster: characterization of the glue proteins and their developmental appearance. Cell 9:365–373; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Becker, H. J. Die Puffs der Speicheldrüssenchromosomen von Drosophila melanogaster. I. Beobachtungen zum Verhalten des Puffmuster im Normalstamm und bei zwei Mutanten, giant und lethal-giant-larvae. Chromosoma 10:654–678; 1959.

    Article  PubMed  CAS  Google Scholar 

  • Becker, H. J. Die Puffs der Speicheldrüssenchromosomen von Drosophila melanogaster. II. Die Auslösung der Puffbildung, ihre Spezifität und ihre beziehung zur Funktion der Rindgrüse. Chromosoma 13:341–384; 1962.

    Article  Google Scholar 

  • Beermann, W. Chromomeres and genes. In: Beermann, W. ed. Developmental studies on giant chromosomes. Results and problems in cell differentiation. Vol. 4. Berlin, Heidelberg and New York: Springer-Verlag; 1972:1–53.

    Google Scholar 

  • Beermann, W. Functional morphology of chromosomes. Cold Spring Harbor Symp. Quant. Biol. 21:220–229; 1956.

    Google Scholar 

  • Belyaeva, E. S.; Aisenson, M. G.; Semeshin, V. F., et al. Cytogenetic analysis of the 2B3-4 to 2B11 region of the X- chromosome of Drosophila melanogaster. I. Cytology of the region and mutant complementation groups. Chromosoma 81:281–306; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva, E. S.; Vlassova, I. E.; Biyasheva, Z. M., et al. Cytogenetic analysis of the 2B3-4 to 2B11 region of the X- chromosome of Drosophila melanogaster. II. Changes in 20-OH ecdysone puffing caused by genetic defects of puff 2B5. Chromosoma 84:207–219; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Berendes, H. D. The control of puffing in Drosophila hydei. In: Beermann, W. ed. Developmental studies on giant chromosomes. Results and problems in cell differentiation. Vol. 4. Berlin, Heidelberg and New York: Springer-Verlag; 1972:181–207.

    Google Scholar 

  • Berendes, H. D.; Ashburner, M. The salivary glands. In: Ashburner, M.; Wright, T. R. F., ed. The genetics and biology of Drosophila. Vol. 2b. London and New York: Academic Press; 1978:453–498.

    Google Scholar 

  • Bownes, M.; Dübendorfer, A.; Smith, T. Ecdysteroids in adult males and females of Drosophila melanogaster. J. Insect Physiol. 30:823–830; 1984.

    Article  CAS  Google Scholar 

  • Boyd, M.; Ashburner, M. The hormonal control of salivary gland secretion in Drosophilia melanogaster: studies in vitro. J. Insect Physiol. 23:517–523; 1977.

    Article  CAS  Google Scholar 

  • Burtis, K. C.; Thummel, C. S.; Jones, C. W., et al. The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell 61:85–99; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Crowley, T. E.; Meyerowitz, E. M. Steroid regulation of RNAs transcribed from the Drosophila 68C polytene chromosome puff. Dev. Biol. 102:110–121; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Crowley, T. E.; Mathers, P. H.; Meyerowitz, E. M. A trans-acting regulatory product necessary for expression of the Drosophila melanogaster 68C glue gene cluster. Cell 39:149–156; 1984.

    Article  PubMed  CAS  Google Scholar 

  • DiBello, P. R.; Withers, D. A.; Bayer, C. A., et al. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics 129:385–397; 1991.

    PubMed  CAS  Google Scholar 

  • Eeken, J. C. J. Ultrastructure of salivary glands of Drosophila lebanonensis during normal development and after in vivo ecdysterone administration. J. Insect Physiol. 23:1043–1055; 1977.

    Article  CAS  Google Scholar 

  • Farkaš, R. Isolation of plasmatocytes and granulocytes from the haemolymph of Tenebrio molitor larvae by centrifugation on a Ficoll-Paque cushion. Biológia 43:505–512; 1988.

    Google Scholar 

  • Farkaš, R. Simple method for high efficiency pulse labelling of proteins in Drosophila larval salivary glands cultured in vitro. Drosophila. Inf. Serv. 70:244–246; 1991.

    Google Scholar 

  • Farkaš, R.; Mat’ha, V. Rapid method for distinguishing plasmatocytes and granulocytes in Galleria mellonella by rhodamine 123 staining. Microbios Lett. 41:133–135; 1989.

    Google Scholar 

  • Feigl, G.; Gram, M.; Pongs, O. A member of the steroid hormone receptor gene family is expressed in the 20-OH-ecdysone inducible puff 75B in Drosophila melanogaster. Nucleic Acids Res. 17:7167–7178; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel, G.; Brookes, V. J. The process by which the puparia of many species of flies become fixed to a substrate. Biol. Bull. (Woods Hole) 105:442–449; 1953.

    Article  Google Scholar 

  • Glauert, A. M. Fixation, dehydration and embedding of biological specimens. In: Glauert, A. M., ed. Practical methods in electron microscopy. Vol. 3. Amsterdam and New York: North-Holland American Elsevier; 1975.

    Google Scholar 

  • Grace, T. D. C. Establishment of a line of mosquito (Aedes aegypti L.) cells grown in vitro. Nature 211:366–367; 1966.

    Article  PubMed  CAS  Google Scholar 

  • Grace, T. D. C. Establishment of four strains of cells from insect tissues grown in vitro. Nature 195:788–789; 1962.

    Article  PubMed  CAS  Google Scholar 

  • Grau, V.; Lafont, R. Metabolism of ecdysone and 20- hydroxyecdysone in adult Drosophila melanogaster. Insect Biochem. Mol. Biol. 24:49–58; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hansson, L.; Lambertsson, A. The role of su(f) gene function and ecdysterone in transcription of glue polypeptide mRNAs in Drosophila melanogaster. Mol. Gen. Genet. 192:395–401; 1983.

    Article  CAS  Google Scholar 

  • Hansson, L.; Lambertsson, A. Steroid regulation of glue protein genes in Drosophila melanogaster. Hereditas 110:61–67; 1989.

    PubMed  CAS  Google Scholar 

  • Hansson, L.; Lineruth, K.; Lambertsson, A. Effect of the l(1)su(f) ts67g mutation of Drosophila melanogaster on glue protein synthesis. Wilhelm Roux’s Arch. Dev. Biol. 190:308–312; 1981.

    Article  CAS  Google Scholar 

  • Harrod, M. J. E.; Kastritsis, C. D. Developmental studies in Drosophila. II. Ultrastructural analysis of the salivary glands of Drosophila pseudoobscura during some stages of development. J. Ultrastruct. Res. 38:482–499; 1972a.

    Article  PubMed  CAS  Google Scholar 

  • Harrod, M. J. E.; Kastritsis, C. D. Developmental studies in Drosophila. VI. Ultrastructural analysis of the salivary glands of Drosophila pseudoobscura during the late larval period. J. Ultrastruct. Res. 40:292–312; 1972b.

    Article  PubMed  CAS  Google Scholar 

  • Hill, R. J.; Segraves, W. A.; Choi, D., et al. The reaction with polytene chromosomes of antibodies raised against Drosophila E75A protein. Insect Biochem. Mol. Biol. 23:99–104; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Janknecht, R.; Taube, W.; Lüdecke, H. J., et al. Characterization of a putative transcription factor gene expressed in the 20-OH-ecdysone inducible puff 74EF in Drosophila melanogaster. Nucleic Acids Res. 17:4455–4464; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Karim, F. D.; Guild, G. M.; Thummel, C. S. The Drosophila Broad-Complex plays a key role in controlling ecdysone- regulated gene expression at the onset of metamorphosis. Development 118:977–988; 1993.

    PubMed  CAS  Google Scholar 

  • Kiss, I.; Beaton, A. H.; Tardiff, J., et al. Interactions and developmental effects of mutations in the Broad-Complex of Drosophila melanogaster. Genetics 118:247–259; 1988.

    PubMed  CAS  Google Scholar 

  • Koelle, M. R.; Talbot, W. S.; Segraves, W. A., et al. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67:59–77; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Korge, G. Chromosome puff activity and protein synthesis in larval salivary glands of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 72:4550–4554; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Korge, G. Larval saliva in Drosophila melanogaster: production, composition, and relationship to chromosome puffs. Dev. Biol. 58:339–355; 1977a.

    Article  PubMed  CAS  Google Scholar 

  • Korge, G. Direct correlation between a chromosome puff and the synthesis of a larval saliva protein in Drosophila melanogaster. Chromosoma 62:155–174; 1977b.

    Article  PubMed  CAS  Google Scholar 

  • Korochkina, L. S.; Nazarova, N. K. Comparative characteristics of the puffing pattern and the endocrine system in an Oregon laboratory stock and in l(2)gl Drosophila melanogaster mutants differing in the time of their death. Chromosoma 62:175–190; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Lane, N. J.; Carter, Y. R. Ashburner, M. Puffs and salivary gland function: the fine structure of the larval and prepupal salivary glands of Drosophila melanogaster. Wilhelm Roux’s Arch. Dev. Biol. 169:216–238; 1972.

    Article  Google Scholar 

  • Lavorgna, G.; Karim, F. D.; Thummel, C. S., et al. Potential role for a FTZ-F1 steroid receptor superfamily member in the control of Drosophila metamorphosis. Proc. Natl. Acad. Sci. USA 90:3004–3008; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, M.; Helmsing, P. J.; Ashburner, M. Parallel changes in puffing activity and patterns of protein synthesis in salivary glands of Drosophila. Proc. Natl. Acad. Sci. USA 72:3604–3608; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Maroni, G.; Stamey, S. C. Use of blue food to select synchronous, late third instar larvae. Drosophila Inf. Serv. 59:142–143; 1983.

    Google Scholar 

  • Mazza, A.; Casale, A. A universal staining mixture for both negative and positive electron microscopic contrast of biological macromolecules. J. Submicrosc. Cytol. 11:517–526; 1979.

    CAS  Google Scholar 

  • Mazza, A.; Tufano, C. A.; Casale, A., et al. A simple and reliable stain for routine microscope observation of ultrathin sections. J. Submicrosc. Cytol. 13:473–478; 1981.

    PubMed  CAS  Google Scholar 

  • Mitchell, H. K.; Tracy, U. W.; Lipps, L. S. The prepupal salivary glands of Drosophila melanogaster. Biochem. Genet. 13:563–573; 1977.

    Article  Google Scholar 

  • Nagel, G.; Rensing, L. Puffing pattern and puff size of Drosophila salivary gland chromosomes in vitro. Cytobiologie 3:288–292; 1971.

    Google Scholar 

  • Natzle, J. E. Temporal regulation of Drosophila imaginal disc morphogenesis: a hierarchy of primary and secondary 20- hydroxyecdysone-responsive loci. Dev. Biol. 156:516–532; 1993.

    Article  Google Scholar 

  • Panitz, R. Über die Rolle der Chromosomen bei der Informations Übertragung in hoheren Organismen. Biol. Zbl. 87:545–565; 1968.

    Google Scholar 

  • Poels, C. L. M. Time sequence in the expression of various developmental characters induced by ecdysterone in Drosophila hydei. Dev. Biol. 23:210–225; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Poels, C. L. M. Mucopolysaccharide secretion from Drosophila salivary gland cells as a consequence of hormone induced gene activity. Cell. Differ. 1:63–78; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Poels, C. L. M.; De Loof, A.; Berendes, H. Functional and structural changes in Drosophila salivary gland cells triggered by ecdysterone. J. Insect Physiol. 17:1717–1729; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Ransom, R. Techniques. In: Ransom, R., ed. A handbook of Drosophila development. Amsterdam and New York: Elsevier Biomedical Press; 1982:1–30.

    Google Scholar 

  • Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208–211; 1963.

    Article  PubMed  CAS  Google Scholar 

  • Richards, G. P. The control of prepupal puffing patterns in vitro: implications for prepupal ecdysone titers in Drosophila melanogaster. Dev. Biol. 48:191–195; 1976a.

    Article  PubMed  CAS  Google Scholar 

  • Richards, G. P. Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. IV. The mid prepupal period. Dev. Biol. 54:256–263; 1976b.

    Article  PubMed  CAS  Google Scholar 

  • Richards, G. P. Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. V. The late prepupal puffs. Dev. Biol. 54:264–275; 1976c.

    Article  PubMed  CAS  Google Scholar 

  • Richards, G. P. The in vitro induction of puffing in salivary glands of the mutant l(2)gl of Drosophila melanogaster by ecdysone. Wilhelm Roux’s Arch. Dev. Biol. 179:339–348; 1976d.

    Google Scholar 

  • Ritossa, F. M. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573; 1962.

    Article  CAS  Google Scholar 

  • Ritossa, F. M. New puffs induced by temperature shock, DNP and salicylate in salivary chromosomes of D. melanogaster. Drosophila Inf. Serv. 37:122–123; 1963.

    Google Scholar 

  • Ritossa, F. M. Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp. Cell Res. 35:601–607; 1964.

    Article  PubMed  CAS  Google Scholar 

  • Ritossa, F. M.; Pulitzer, J. F.; Swift, H., et al. On the action of ribonuclease in salivary gland cells of Drosophila. Chromosoma 16:144–151; 1965.

    Article  PubMed  CAS  Google Scholar 

  • Ritossa, F. M.; von Borstel, R. C. Chromosome puffs in Drosophila induced by ribonuclease. Science 145:513–514; 1964.

    Article  PubMed  CAS  Google Scholar 

  • Rodman, T. C. DNA replication in salivary gland nuclei of Drosophila melanogaster at successive larval and pupal stages. Genetics 55:375–386; 1967.

    PubMed  CAS  Google Scholar 

  • Rudkin, G. T. Replication in polytene chromosomes. In: Beermann, W., ed. Developmental studies on giant chromosomes. Results and problems in cell differentiation. Vol. 4. Berlin, Heidelberg, New York: Springer-Verlag; 1972:60–85.

    Google Scholar 

  • Sarmiento, L. A.; Mitchell, H. K. Drosophila melanogaster salivary gland proteins and pupation. Dev. Genet. 3:255–272; 1982.

    Article  CAS  Google Scholar 

  • Sato, T. A modified method for lead staining of thin sections. J. Electron Microsc. 17:158–159; 1968.

    CAS  Google Scholar 

  • Segraves, W. A.; Hogness, D. S. The E75 ecdysone-inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes Dev. 4:204–219; 1990.

    PubMed  CAS  Google Scholar 

  • Sláma, K. Some old concepts and new findings on hormonal control of morphogenesis of insects. J. Insect Physiol. 21:921–955; 1975.

    Article  Google Scholar 

  • Sláma, K. Homeostatic function of ecdysteroids in ecdysis and oviposition. Acta Entomol. Bohemoslov. 73:65–75; 1980.

    Google Scholar 

  • Smith, T.; Bownes, M. Metabolism of 20-hydroxyecdysone in adult Drosophila melanogaster. Insect Biochem. 15:749–754; 1985.

    Article  CAS  Google Scholar 

  • Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31–43; 1969.

    Article  PubMed  CAS  Google Scholar 

  • Stocker, A. J.; Kastritsis, C. D. Developmental studies in Drosophila. III. The puffing patterns of the salivary gland chromosomes of D. pseudoobscura. Chromosoma 37:139–176; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Stone, B. L.; Thummel, C. S. The Drosophila 78C early late puff contains E78, an ecdysone-inducible gene that encodes a novel member of the nuclear hormone receptor superfamily. Cell 75:307–320; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, W. S.; Swyryd, E. A.; Hogness, D. S. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73:1323–1337; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Thomopoulos, G. N. An ultrastructural and histochemical study of the secretory granules in the salivary gland cells of Drosophila melanogaster species subgroup: phylogenetic relationships and evolutionary aspect. Can. J. Zool. 65:950–957; 1987.

    Article  Google Scholar 

  • Tissières, A.; Mitchell, H. K.; Tracy, U. M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84:389–398; 1974.

    Article  PubMed  Google Scholar 

  • Urness, L. D.; Thummel, C. S. Molecular interactions within the ecdysone regulatory hierarchy: DNA binding properties of the Drosophila ecdysone-inducible E74A protein. Cell 63:47–61; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Van Pelt-Verkuil, E. Hormonal control of lysosomal activity in the larval fat body of Calliphora erythrocephala Meigen. PhD Thesis, Rijks University, Leiden, Netherlands; 1979a.

    Google Scholar 

  • Van Pelt-Verkuil, E. The induction of lysosomal enzyme activity in the fat body of Calliphora erythrocephala: changes in the internal environment. J. Insect Physiol. 26:91–101; 1979b.

    Article  Google Scholar 

  • Vijay Raghavan, K.; Mayeda, C.; Meyerowitz, E. M. The action of the l(1)npr1 + locus on the Drosophila glue gene Sgs-3 is cell autonomous. J. Genet. 67:141–150; 1988.

    Article  Google Scholar 

  • von Gaudecker, B. Der Strukturwandel der larvalen Speicheldrüse von Drosophila melanogaster. Ein Beitrag zur Frage nach der steuernden Wirkung aktiver Gene auf das Cytoplasma. Z. Zellforsch. 127:50–86; 1972.

    Article  Google Scholar 

  • von Gaudecker, B.; Schmale, E. M. Substrate-histochemical investigations and ultrahistochemical demonstrations of acid phosphatase in larval and prepupal salivary glands of Drosophila melanogaster. Cell Tissue Res. 155:75–89; 1974.

    Article  Google Scholar 

  • von Kalm, L.; Crossgrove, K.; Von Seggern, D., et al. The Broad-Complex directly controls a tissue-specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis. EMBO J 13:3505–3516; 1994.

    Google Scholar 

  • Walker, V. K.; Ashburner, M. The control of ecdysterone-regulated puffs in Drosophila salivary glands. Cell 26:269–277; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Watson, M. L. Staining of tissue sections for electron microscopy with heavy metals. J. Biophys. Biochem. Cytol. 4:475–478; 1958.

    Article  PubMed  CAS  Google Scholar 

  • Woodard, C. T.; Baehrecke, E. H.; Thummel, C. S. A molecular mechanism for the stage specificity of the Drosophila prepupal genetic response to ecdysone. Cell 79:607–615; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Žd’árek, J. Regulation of pupariation in flies. In: Kerkut, G. A.; Gilbert, L. I., ed. Comprehensive insect physiology, biochemistry, and pharmacology. Vol. 8. Oxford & New York: Pergamon Press; 1985:301–333.

    Google Scholar 

  • Žd’árek, J.; Sláma, K.; Fraenkel, G. Changes in internal pressure during puparium formation in flies. J. Exp. Zool. 207:187–196; 1979.

    Article  Google Scholar 

  • Zhimulev, I. F.; Izquierdo, M. L.; Lewis, M., et al. Patterns of protein synthesis in salivary glands of Drosophila melanogaster during larval and prepupal development. Wilhelm Roux’s Arch. Dev. Biol. 190:351–357; 1981.

    Article  CAS  Google Scholar 

  • Zhimulev, I. F.; Kolesnikov, N. N. Synthesis and secretion of mucoprotein glue in the salivary gland of Drosophila melanogaster. Wilhelm Roux’s Archiv. Dev. Biol. 178:15–28; 1975.

    Article  CAS  Google Scholar 

  • Zhimulev, I. F.; Vlassova, I. E.; Belyaeva, E. S. Cytogenetic analysis of the 2B3-4 to 2B11 region of the X-chromosome of Drosophila melanogaster. III. Puffing disturbance in salivary gland chromosomes of homozygotes for mutation l(1)ppl t10. Chromosoma 85:659–672; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Farkaš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkaš, R., Šuťáková, G. Ultrastructural changes of Drosophila larval and prepupal salivary glands cultured in vitro with ecdysone. In Vitro Cell.Dev.Biol.-Animal 34, 813–823 (1998). https://doi.org/10.1007/s11626-998-0036-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0036-7

Key words

Navigation