Skip to main content
Log in

Island Populations, Human Introductions and the Limitations of Genetic Analyses: the Case of the Sardinian Red Deer (Cervus elaphus corsicanus)

  • Published:
Human Evolution

Abstract

The Corsican red deer (Cervus elaphus corsicanus) is endemic to the Tyrrhenian islands of Corsica and Sardinia. It has been regarded as an introduced species and has allegedly been present on the islands since the beginning of the Neolithic culture some 8,000 years ago. In this review, we present the results of relevant genetic analyses and discuss their implications for the origin of C. e. corsicanus. Different genetic studies hypothesize that the most probable ancestral populations for Sardianian red deer were alternatively, the Near East, North Africa, or mainland Italy. These respective scenarios are evaluated and it is concluded that geneticists have not yet been unable to definitively solve the problem. However, a natural colonization of the Tyrrhenian islands from mainland Italy via the Tuscan archipelago is not only in accordance with palaeontological findings but also with at least some of the genetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Alcover JA, Seguí B, Bover P (1999) Extinctions and local disappearances of vertebrates in the western mediterranean islands. In: MacPhee RDE (ed) Extinctions in Near Time. Causes, Contexts, and Consequences. Kluwer Academic/Plenum Publishers, New York, pp 165–188

    Google Scholar 

  2. Avise JC (1989) Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43:1192–1208

    Article  Google Scholar 

  3. Beccu E (1989) Il Cervo Sardo. Delfino Ed., Cagliari

  4. Bützler W (1986) Cervus elaphus Linnaeus, 1758 – Rothirsch. In: Niethammer J, Krapp F (eds) Handbuch der Säugetiere Europas, vol 2/II. Aula-Verlag, Wiesbaden, pp 107–139

    Google Scholar 

  5. Charlesworth JK (1957) The Quaternary Era with Special Reference to Its Glaciation, vol 2. Edward Arnold, London

    Google Scholar 

  6. Di Stefano G, Petronio C (2002) Systematics and evolution of the Eurasian Plio–Pleistocene tribe cervini (Artiodactyla, Mammalia). Geol Rom 36:311–334

    Google Scholar 

  7. Dolan JM (1988) A deer of many lands – a guide to the subspecies of the red deer cervus elaphus L. Zoonooz LXII(10):4–34

    Google Scholar 

  8. Feulner PGD, Bielfeldt W, Zachos FE, Bradvarovic J, Eckert I, Hartl GB (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies cervus elaphus montanus (Carpathian red deer). Heredity 93:299–306

    Article  Google Scholar 

  9. Flerov CC (1952) Musk Deer and Deer. Fauna of U.S.S.R., Mammals, vol I, 2. Academy of Sciences, Moscow

    Google Scholar 

  10. Frati F, Hartl GB, Lovari S, Delibes M, Markov G (1998) Quaternary radiation and genetic structure of the red fox Vulpes vulpes in the Mediterranean Basin, as revealed by allozymes and mitochondrial DNA. J Zool Lond 245:43–51

    Google Scholar 

  11. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423

    Article  Google Scholar 

  12. Geddes D (1985) Mesolithic domestic sheep in West Mediterranean Europe. J Archaeol Sci 12:25–48

    Article  Google Scholar 

  13. Geist V (1998) Deer of the World. Their Evolution, Behavior, and Ecology. Stackpole Books, Mechanicsburg, PA

    Google Scholar 

  14. Groves CP, Grubb P (1987) Relationships of living deer. In: Wemmer CM (ed) Biology and Management of the Cervidae. Research Symposia of the National Zoological Park. Smithsonian Institution Press, Washington, DC, London, pp 21–59

  15. Hartl GB, Nadlinger K, Apollonio M, Markov G, Klein F, Lang G, Findo S, Markowski J (1995) Extensive mitochondrial-DNA differentiation among European Red deer (Cervus elaphus) populations: implications for conservation and management. Z Saugetierkd 60:41–52

    Google Scholar 

  16. Hartl GB, Zachos F, Nadlinger K (2003) Genetic diversity in European red deer (Cervus elaphus L.): anthropogenic influences on natural populations. C R Biol 326:S37–S42

    Google Scholar 

  17. Hmwe SS, Zachos FE, Eckert I, Lorenzini R, Fico R, Hartl GB (2006) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linn Soc 88:691–701

    Article  Google Scholar 

  18. Klein Hofmeijer G (1997) Late Pleistocene Deer Fossils from Corbeddu Cave. Implications for Human Colonization of the Island of Sardinia. BAR International Series 663. Hadrian Books, Oxford

  19. Krumbiegel I (1982) Der korsika-rothirsch (Cervus elaphus corsicanus, Erxleben 1777) und sein Biotop. Saugetierkdl Mitt 30:281–286

    Google Scholar 

  20. Lever C (1985) Naturalized Mammals of the World. Longman, London

    Google Scholar 

  21. Lorenzini R, Fico R, Mattioli S (2005) Mitochondrial DNA evidence for a genetic distinction of the native red deer of Mesola, northern Italy, from the Alpine populations and the Sardinian subspecies. Mamm Biol 70:187–198

    Google Scholar 

  22. Lowe VPM, Gardiner AS (1974) A re-examination of the subspecies of Red deer (Cervus elaphus) with particular reference to the stocks in Britain. J Zool Lond 174:185–201

    Article  Google Scholar 

  23. Ludt CJ, Schroeder W, Rottmann O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 31:1064–1083

    Article  Google Scholar 

  24. Lydekker R (1898) The Deer of All Lands. A History of the Family Cervidae Living and Extinct. Rowland Ward, London

  25. Lydekker R (1915) Catalogue of the ungulate mammals in the British Museum (Natural History), vol IV Artiodactyla. British Museum (Natural History), London

    Google Scholar 

  26. Masseti M (1993) Post-Pleistocene variations of the non-flying terrestrial mammals on some Italian islands. Suppl Ric Biol Selvag 21:201–209

    Google Scholar 

  27. Masseti M, Vianello F (1991) Importazioni preistoriche di mammiferi alloctoni nelle isole del Mar Tirreno centro-settentrionale. Riv Sci Preist 43:275–292

    Google Scholar 

  28. Mattioli S (1990) Red deer in the Italian peninsula with particular reference to the Po delta population. Deer 8:95–98

    Google Scholar 

  29. Mattioli S, Fico R, Lorenzini R, Nobili G (2003) Mesola red deer: physical characteristics, population dynamics and conservation perspectives. Hystrix, Ital J Mammal 14:87–94

    Google Scholar 

  30. Niethammer G (1963) Die einbürgerung von säugetieren und vögeln in Europa. Paul Parey, Berlin

    Google Scholar 

  31. Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    Google Scholar 

  32. Pereira E (2000) Les deux cervidés du pléistocène de corse. Abstract, The holarctic ungulates of the Pliocene and Pleistocene. Congress, Avignon, 19–22 September 2000

  33. Peterson RL (1955) North American Moose. University of Toronto Press, Toronto

    Google Scholar 

  34. Sanges M (1987) Gli strati del neolitico antico e medio nella grotta corbeddu di oliena (Nuoro). Nota preliminare. Atti della XXVI Riunione Scientifica IIPP, Firenze, 7–10 Novembre 1985, pp 825–830

  35. Schüle W (1993) Mammals, vegetation and the initial human settlement of the Mediterranean islands: a palaeoecological approach. J Biogeogr 20:399–412

    Article  Google Scholar 

  36. Seton ET (1927) Lives of Game Animals, vol 3. Doubleday Doran, New York

    Google Scholar 

  37. Shackleton NJ (1987) Oxygen isotopes, ice volume and sea level. Quat Sci Rev 6:183–190

    Article  Google Scholar 

  38. Søndaar P-Y (1977) Insularity and its effect on mammal evolution. In: Hecht MK, Goody PC, Hecht BM (eds) Major Patterns in Vertebrate Evolution. Plenum Press, New York, pp 671–707

    Google Scholar 

  39. Søndaar P-Y, Sanges M, Kotsakis T, de Boer PL (1986) The Pleistocene deer hunter of Sardinia.Geobios 19:17–25

    Google Scholar 

  40. Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  Google Scholar 

  41. Vigne J-D (1992) Zooarchaeology and the biogeographical history of the mammals of Corsica and Sardinia since the last ice age. Mamm Rev 22:87–96

    Google Scholar 

  42. Zachos F, Hartl GB, Apollonio M, Reutershan T (2003) On the phylogeographic origin of the Corsican red deer (Cervus elaphus corsicanus): evidence from microsatellites and mitochondrial DNA. Mamm Biol 68:284–298

    Google Scholar 

  43. Zachos FE, Hmwe SS, Hartl GB (2006) Biochemical and DNA markers yield strikingly different results regarding variability and differentiation of roe deer (Capreolus capreolus, Artiodactyla: Cervidae) populations from northern Germany. J Zool Syst Evol Res 44:167–174

    Article  Google Scholar 

Download references

Acknowledgements

Dr U. Schmölcke, Kiel, helped creating the map, which is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Zachos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachos, F.E., Hartl, G.B. Island Populations, Human Introductions and the Limitations of Genetic Analyses: the Case of the Sardinian Red Deer (Cervus elaphus corsicanus). Human Evolution 21, 177–183 (2006). https://doi.org/10.1007/s11598-006-9012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11598-006-9012-y

Keywords

Navigation