Skip to main content
Log in

Altered expression profile of micrornas in gastric stromal tumor

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play important roles in carcinogenesis, but the global miRNA expression profile in gastric stromal tumor tissues remains unclear. This study was to examine the miRNA expression profile in gastric stromal tumor tissues and explore the function of dysregulated miRNAs by performing gene ontology (GO) and pathway enrichment analysis. Total RNA was extracted and purified from 3 pairs of frozen gastric stromal tumor tissues and the adjacent non-tumor tissues by using mirVana™ miRNA isolation kit. The miRNA expression was analyzed with Affymetrix microarrays (version 4.0) containing 2578 human mature microRNA probes. The dysregulated microRNAs were validated by quantitative RT-PCR in 30 pairs of gastric stromal tumor tissues. The target gene of the dysregulated microRNAs was predicted by miRanda, TargetScan and PicTar. GO and pathway enrichment analysis was conducted to examine the potential function of miR-3178 and miR-193a-5p. The results showed that there were 12 differently expressed microRNAs in gastric stromal tumor tissues, among which 10 miRNAs were down-regulated, and 2 were up-regulated (P<0.05). The validation results by RT-PCR were in accordance with those by microRNA microarry. GO analysis found that the target genes of miR-3178 were involved in 5 GO terms and those of miR-193a-5p in 7 GO terms in level 2. Pathway enrichment analysis suggested that miR-3178 and miR-193a-5p were related to 57 and 122 signaling pathways, respectively. It was concluded that gastric stromal tumor displays a unique miRNA signature. This specific expression may become a new diagnostic and prognostic biomarker for gastric stromal tumor. miR-3178 and miR-193a-5p function as suppressive microRNAs, and they may also become diagnosis and treatment targets for gastric stromal tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blay JY, Bonvalot S, Casali P, et al. Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20-21 March 2004, under the auspices of ESMO. Ann Oncol, 2005,16(4):566–578

    Google Scholar 

  2. Nilsson B, Bumming P, Meis-Kindblom JM, et al. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era—a population-based study in western Sweden. Cancer, 2005,103(4):821–829

    Article  PubMed  Google Scholar 

  3. Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol, 2006,23(2):70–83

    Article  PubMed  Google Scholar 

  4. Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science, 1998,279(5350):577–580

    Article  CAS  PubMed  Google Scholar 

  5. Kindblom LG, Remotti HE, Aldenborg F, et al. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol, 1998,152(5):1259–1269

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Sekine M, Imaoka H, Mizuno N, et al. Clinical course of gastrointestinal stromal tumor diagnosed by endoscopic ultrasound-guided fine-needle aspiration. Dig Endosc, 2015,27(1):44–52

    Article  PubMed  Google Scholar 

  7. Moehler M, Voigt J, Kastor M, et al. Endoscopic ultrasonography-guided fine-needle aspiration (EUS-FNA) as primary diagnostic tool for unclear lesions in the upper gastrointestinal tract. Dtsch Med Wochenschr, 2011, 136(7):303–308

    Article  CAS  PubMed  Google Scholar 

  8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  9. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer, 2006,94(6): 776–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005,120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  11. Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005,65(16):7065–7070

    Article  CAS  PubMed  Google Scholar 

  12. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  13. Kanda T. Criminal or bystander: imatinib and second primary malignancy in GIST patients. Chin J Cancer Res, 2013,25(5):490–492

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Li ZY, Tang L, Li SX, et al. Imatinib mesylate in clinically suspected gastric stromal tumors. Chin J Cancer Res, 2013,25(5):600–602

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Zhao X, Yue C. Gastrointestinal stromal tumor. J Gastrointest Oncol, 2012,3(3):189–208

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Liegl B, Hornick JL, Antonescu CR, et al. Rhabdomyosarcomatous differentiation in gastrointestinal stromal tumors after tyrosine kinase inhibitor therapy: a novel form of tumor progression. Am J Surg Pathol, 2009,33(2):218–226

    Article  PubMed  Google Scholar 

  17. Subramanian S, Lui WO, Lee CH, et al. MicroRNA expression signature of human sarcomas. Oncogene, 2008,27(14):2015–2026

    Article  CAS  PubMed  Google Scholar 

  18. Gits CM, van Kuijk PF, Jonkers MB, et al. MiR-17-92 and miR-221/222 cluster members target KIT and ETV1 in human gastrointestinal stromal tumors. Br J Cancer, 2013,109(6):1625–1635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Haller F, von Heydebreck A, Zhang JD, et al. Localization-and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. J Pathol, 2010,220(1):71–86

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto H, Oda Y. Gastrointestinal stromal tumor: Recent advances in pathology and genetics. Pathol Int, 2015,65(1):9–18

    Article  CAS  PubMed  Google Scholar 

  21. Blandamura S, Alessandrini L, Bertorelle R, et al. Multiple sporadic gastrointestinal stromal tumors concomitant with ampullary adenocarcinoma: a case report with KIT and PDGFRA mutational analysis and miR-221/222 expression profile. Pathol Res Pract, 2014,210(6):392–396

    Article  CAS  PubMed  Google Scholar 

  22. Fan R, Zhong J, Zheng S, et al. MicroRNA-218 inhibits gastrointestinal stromal tumor cell and invasion by targeting KIT. Tumour Biol, 2014,35(5):4209–4217

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto H, Kohashi K, Fujita A, et al. Fascin-1 overexpression and miR-133b downregulation in the progression of gastrointestinal stromal tumor. Mod Pathol, 2013,26(4):563–571

    Article  CAS  PubMed  Google Scholar 

  24. Chun-Zhi Z, Lei H, An-Ling Z, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. Bmc Cancer, 2010,10:367

    Article  PubMed Central  PubMed  Google Scholar 

  25. Niinuma T, Suzuki H, Nojima M, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res, 2012,72(5): 1126–1136

    Article  CAS  PubMed  Google Scholar 

  26. Choi HJ, Lee H, Kim H, et al. MicroRNA expression profile of gastrointestinal stromal tumors is distinguished by 14q loss and anatomic site. Int J Cancer, 2010,126(7): 1640–1650

    CAS  PubMed  Google Scholar 

  27. Akcakaya P, Caramuta S, Ahlen J, et al. microRNA expression signatures of gastrointestinal stromal tumours: associations with imatinib resistance and patient outcome. Br J Cancer, 2014,111(11):2091–2102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gao X, Shen K, Wang C, et al. MiR-320a downregulation is associated with imatinib resistance in gastrointestinal stromal tumors. Acta Biochim Biophys Sin (Shanghai), 2014,46(1):72–75

    Article  CAS  Google Scholar 

  29. Liu S, Cui J, Liao G, et al. MiR-137 regulates epithelialmesenchymal transition in gastrointestinal stromal tumor. Tumour Biol, 2014,35(9):9131–9138

    Article  CAS  PubMed  Google Scholar 

  30. Hechtman JF, De Matteo R, Nafa K, et al. Additional primary malignancies in patients with gastrointestinal stromal tumor (GIST): A clinicopathologic study of 260 patients with molecular analysis and review of the literature. Ann Surg Oncol, 2015,22(8):2633–2639

    Article  PubMed  Google Scholar 

  31. Kou Y, Zhao Y, Bao C, et al. Comparison of gene expression profile between tumor tissue and adjacent non-tumor tissue in patients with gastric gastrointestinal stromal tumor (GIST). Cell Biochem Biophys, 2015,[PMID: 25586720]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xiao  (肖 军).

Additional information

Both authors contributed equally to this work.

This study was supported by the Natural Science Foundation of Hubei Province (No. 303132209).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Wang, Qx. & Zhu, Yq. Altered expression profile of micrornas in gastric stromal tumor. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 35, 842–850 (2015). https://doi.org/10.1007/s11596-015-1516-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-015-1516-0

Key words

Navigation