Skip to main content
Log in

Influence of Formic Acid on Corrosion Behavior of Bronze under Thin Electrolyte Layer

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The corrosion behavior of formic acid towards bronze under thin electrolyte layer (TEL) was investigated by means of electrochemical measurement. Bare bronze had smaller self-corrosion current density than Cu2O patina bronze and CuCl patina bronze, while it had higher polarization resistance. The corrosion behavior of bronze materials had differences in various TELs and bulk solutions. The critical thickness of TEL for Bare Bronze was 200 µm, which normly occurred in the transformation from anode control to cathode control. The thickness of TEL had a negligible effect on the corrosion rate of Cu2O patina bronze when it was greater than 150 µm. For CuCl patina bronze, the corrosion process accelerated with thinner TEL. SEM was used to analyze the morphology and composition of corrosion products. Cu2O,Cu(OH)(HCOO) and Cu(HCOO)2 were formed on the surface of Bare Bronze and Cu2O patina bronze, nevertheless, the main corrosion product of CuCl patina bronze was Cu2Cl(OH)3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prosek T, Taube M, Dubois F, et al. Application of Automated Electrical Resistance Sensors for Measurement of Corrosion Rate of Copper, Bronze and Iron in Model Indoor Atmospheres Containing Short-chain Volatile Carboxylic Acids[J]. Corros. Sci., 2014, 87: 376–382

    Article  CAS  Google Scholar 

  2. Gibson L T, Watt C M. Acetic and Formic Acids Emitted from Wood Samples and Their Effect on Selected Materials in Museum Environments[J]. Corros. Sci., 2010, 52(1): 172–178

    Article  CAS  Google Scholar 

  3. Martellini T, Berlangieri C, Dei L, et al. Indoor Levels of Volatile Organic Compounds at Florentine Museum Environments in Italy[J]. Indoor Air, 2020, 30(5): 900–913

    Article  CAS  Google Scholar 

  4. Schieweck A, Lohrengel B, Siwinski N, et al. Organic and Inorganic Pollutants in Storage Rooms of the Lower Saxony State Museum Hanover, Germany[J]. Atmos. Environ., 2005, 39(33): 6098–6108

    Article  CAS  Google Scholar 

  5. Allen A G, Miguel A H. Indoor Organic and Inorganic Pollutants: In-situ Formation and Dry Deposition in Southeastern Brazil[J]. Atmos. Environ., 1995, 29(23): 3519–3526

    Article  CAS  Google Scholar 

  6. Gibson L T, Cooksey B G, Littlejohn D, et al. A Diffusion Tube Sampler for the Determination of Acetic Acid and Formic Acid Vapours in Museum Cabinets[J]. Anal. Chim. Acta, 1997, 341(1): 11–19

    Article  CAS  Google Scholar 

  7. Robinet L, Eremin K, Coupry C, et al. Effect of Organic Acid Vapors on the Alteration of Soda Silicate Glass[J]. J. Non-Cryst. Solids, 2007, 353(16–17): 1546–1559

    Article  CAS  Google Scholar 

  8. Rocca E, Rapin C, Mirambet F. Inhibition Treatment of the Corrosion of Lead Artefacts in Atmospheric Conditions and by Acetic Acid Vapour: Use of Sodium Decanoate[J]. Corros. Sci., 2004, 46(3): 653–665

    Article  CAS  Google Scholar 

  9. Ghiara G, Campodonico S, Piccardo P, et al. Micro Raman Investigation on Corrosion of Pb-based Alloy Replicas of Letters from the Museum Plantin-Moretus, Antwerp[J]. J. Raman Spectrosc., 2014, 45(11–12): 1093–1102

    Article  CAS  Google Scholar 

  10. Bastidas D M, Cayuela I, Bastidas J M. Ant-nest Corrosion of Copper Tubing in Air-conditioning Units[J]. Rev. Metal Madrid., 2006, 42(5): 367–381

    Article  CAS  Google Scholar 

  11. Forslund M, Leygraf M, Claesson P M, et al. Micro-Galvanic Corrosion Effects on Patterned Copper-Zinc Samples during Exposure in Humidified Air Containing Formic Acid[J]. J. Electrochem. Soc., 2013, 160(9): C423–C431

    Article  CAS  Google Scholar 

  12. George K S, Nesic S. Investigation of Carbon Dioxide Corrosion of Mild Steel in the Presence of Acetic Acid - Part 1: Basic Mechanisms [J]. Corrosion (Houston, TX, U. S.), 2007, 63(2): 178–186

    Article  CAS  Google Scholar 

  13. Chen C, Cai L, Wang X, et al. Corrosion Behavior of Bronze under Organic Acid-containing Thin Electrolyte Layer[J]. Mater. Corros., 2019, 70(2): 319–327

    Article  CAS  Google Scholar 

  14. Nishikata A. Electrochemical Measurements under Thin Solution Films and the Application to Atmospheric Corrosion Study[J]. Zairyo to Kankyo, 2016, 65(4): 120–126

    Article  CAS  Google Scholar 

  15. Liao X, Cao F, Zhang J. Effect of Sulphate on the Corrosion Behavior of Bronze under a Chloride-containing Thin Electrolyte Layer[J]. Mater. Corros., 2018, 69(10): 1412–1421

    Article  CAS  Google Scholar 

  16. Masi G, Esvan J, Josse C, et al. Characterization of Typical Patinas Simulating Bronze Corrosion in Outdoor Conditions[J. Mater. Chem. Phys., 2017, 200: 308–321

    Article  CAS  Google Scholar 

  17. Wang Z, Li Y, Jiang X, et al. Research Progress on Ancient Bronze Corrosion in Different Environments and Using Different Conservation Techniques: A Review[J]. MRS Adv., 2017, 2: 2033–2041

    Article  CAS  Google Scholar 

  18. Yang F, Kang H, Guo E, et al. The Role of Nickel in Mechanical Performance and Corrosion Behaviour of Nickel-Aluminium Bronze in 3.5 wt.% NaCl Solution[J]. Corros. Sci., 2018, 139: 333–345

    Article  CAS  Google Scholar 

  19. Liao X, Cao F, Chen A, et al. In-situ Investigation of Atmospheric Corrosion Behavior of Bronze under Thin Electrolyte Layers using Electrochemical Technique[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(5): 1239–1249

    Article  CAS  Google Scholar 

  20. Alfantazi A M, Ahmed T M, Tromans D. Corrosion Behavior of Copper Alloys in Chloride Media[J]. Mater. Design., 2009, 30(7): 2425–2430

    Article  CAS  Google Scholar 

  21. Zhang B, Wang J, Yan F. Load-Dependent Tribocorrosion Behaviour of Nickel-Aluminium Bronze in Artificial Seawater[J]. Corros. Sci., 2018, 131: 252–263

    Article  CAS  Google Scholar 

  22. Toth K, Graf E, Horvai G, et al. Plasticized Poly(Vinyl Chloride) Properties and Characteristics of Valinomycin Electrodes. 2. Low-frequency, Surface-rate, and Warburg Impedance Characteristics [J]. Anal. Chem., 1986, 58(13): 2741–2744

    Article  CAS  Google Scholar 

  23. K’Owino I O, Sadik O A. Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring[J]. Electroanal., 2005, 17(23): 2101–2113

    Article  Google Scholar 

  24. Jorcin J B, Orazem M E, Pebere N, et al. CPE Analysis by Local Electrochemical Impedance Spectroscopy[J]. Electrochim. Acta, 2006, 51(8–9): 1473–1479

    Article  CAS  Google Scholar 

  25. Qiang Y, Zhang S, Yan S, et al. Three Indazole Derivatives as Corrosion Inhibitors of Copper in a Neutral Chloride Solution[J]. Corros. Sci., 2017, 126: 295–304

    Article  CAS  Google Scholar 

  26. Chen Y, Qi D M, Wang H P, et al. Corrosion Behavior of Aluminum Bronze under Thin Electrolyte Layers Containing Artificial Seawater[J]. Electrochem. Sci., 2015, 10(11): 9056–9072

    CAS  Google Scholar 

  27. Zhang S H, Lyon S B. The Electrochemistry of Iron, Zinc and Copper in Thin Layer Electrolytes[J]. Corros. Sci., 1993, 35(1–4): 713–718

    Article  CAS  Google Scholar 

  28. Sadawy M M, Ghanem M. Grain Refinement of Bronze Alloy by Equal-Channel Angular Pressing (ECAP) and Its Effect on Corrosion Behaviour[J]. Defence Technology, 2016, 12(4): 316–323

    Article  Google Scholar 

  29. Liu D, Li Y, Yu D, et al. Influences of NH +4 Ions and Thin Electrolyte Layers (TEL) Thickness on the Corrosion Behavior of AZ91D Magnesium Alloy[J]. Mater. Corros., 2019, 70(11): 2088–2102

    Article  CAS  Google Scholar 

  30. Lopez-Delgado A, Bastidas J M, Alonso M P, et al. Influence of Acetic and Formic Vapours on Patinated Artistic Bronze[J]. J. Mater. Sci. Lett., 1997, 16(9): 776–779

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yan  (闫莹).

Additional information

Funded by the National Natural Science Foundation of China (No. 51671117) and the National Key Research and Development Program (No. 2018YFC1901000)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Cai, L., Wang, Y. et al. Influence of Formic Acid on Corrosion Behavior of Bronze under Thin Electrolyte Layer. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 482–489 (2022). https://doi.org/10.1007/s11595-022-2555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2555-6

Key words

Navigation