Skip to main content
Log in

Second-order differentiability of probability functions

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we study second-order differentiability properties of probability functions. We present conditions under which probability functions involving nonlinear systems and Gaussian (or Student) multi-variate random vectors are twice continuously differentiable. We provide an expression for their Hessian that can be useful in numerical methods for solving probabilistic constrained optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Since we do not assume complex structure on g, the general case reduces to the normal centered case, as follows. Let \(\tilde{\xi }\sim \mathcal {N}(\mu ,\Sigma )\) be a general multi-variate Gaussian random vector with mean \(\mu \) and covariance matrix \(\Sigma \). We define \(\tilde{g}(x,z) = g(x, Dz + \mu )\) and observe that \(\xi = D^{-1}(\tilde{\xi }- \mu ) \sim \mathcal {N}(0,R)\), where D is the diagonal matrix with \(D_{ii} = {\Sigma _{ii}}^{1/2}\). We see that \(\mathbb {P}[ g(x,\tilde{\xi }) \le 0] = \mathbb {P}[ \tilde{g}(x,\xi ) \le 0 ]\) and that neither convexity in the second argument of g, nor its continuous differentiability properties are perturbed by such a transformation.

References

  1. Arnold, T., Henrion, R., Möller, A., Vigerske, S.: A mixed-integer stochastic nonlinear optimization problem with joint probabilistic constraints. Pacific J. Optim. 10, 5–20 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Bremer, I., Henrion, R., Möller, A.: Probabilistic constraints via SQP solver: application to a renewable energy management problem. Comput. Manag. Sci. 12, 435–459 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deák, I.: Computing probabilities of rectangles in case of multinormal distribution. J. Stat. Comput. Simul. 26(1–2), 101–114 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deák, I.: Subroutines for computing normal probabilities of sets—computer experiences. Ann. Oper. Res. 100, 103–122 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Genz, A., Bretz, F.: Computation of multivariate normal and t probabilities. Number 195 in Lecture Notes in Statistics. Springer, Dordrecht (2009)

  6. Henrion, R., Möller, A.: Optimization of a continuous distillation process under random inflow rate. Computer Math. Appl. 45, 247–262 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Henrion, R., Möller, A.: A gradient formula for linear chance constraints under Gaussian distribution. Math. Oper. Res. 37, 475–488 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Henrion, R., Strugarek, C.: Convexity of chance constraints with independent random variables. Comput. Optim. Appl. 41, 263–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Henrion, R., Strugarek, C.: Convexity of chance constraints with dependent random variables: the use of copulae. In: Bertocchi, M., Consigli, G., Dempster, M.A.H. (eds.) Stochastic Optimization Methods in Finance and Energy: New Financial Products and Energy Market Strategies. International Series in Operations Research and Management Science, pp. 427–439. Springer, New York (2011)

  10. Hunter, J.K., Nachtergaele, B.: Applied Analysis. World Scientific Publishing Company, Singapore (2001)

    Book  MATH  Google Scholar 

  11. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014)

  12. Morgan, D.R., Eheart, J.W., Valocchi, A.J.: Aquifer remediation design under uncertainty using a new chance constraint programming technique. Water Resour. Res. 29, 551–561 (1993)

    Article  Google Scholar 

  13. Naor, A., Romik, D.: Projecting the surface measure of the sphere of \(\ell _p^n\). Ann. I.H. Poincaré 39(2), 241–261 (2003)

  14. Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995)

    Book  MATH  Google Scholar 

  15. Prékopa, A.: Probabilistic programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 267–351. Elsevier, Amsterdam (2003)

    Chapter  Google Scholar 

  16. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Modeling and Theory, MPS-SIAM series on optimization, vol. 9. SIAM and MPS, Philadelphia (2009)

  17. Uryas’ev, S.: Derivatives of probability and integral functions: general theory and examples, 2nd edn. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 658–663. Springer, New York (2009)

  18. van Ackooij, W.: Decomposition approaches for block-structured chance-constrained programs with application to hydro-thermal unit commitment. Math. Methods Oper. Res. 80(3), 227–253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. van Ackooij, W.: Eventual convexity of chance constrained feasible sets. Optimization (J. Math. Program. Oper. Res) 64(5), 1263–1284 (2015)

  20. van Ackooij, W., de Oliveira, W.: Level bundle methods for constrained convex optimization with various oracles. Comput. Optim. Appl. 57(3), 555–597 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. van Ackooij, W., Henrion, R.: Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM J. Optim. 24(4), 1864–1889 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: On probabilistic constraints induced by rectangular sets and multivariate normal distributions. Math. Methods Oper. Res. 71(3), 535–549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: Joint chance constrained programming for hydro reservoir management. Optim. Eng. 15, 509–531 (2014)

    MathSciNet  Google Scholar 

  24. van Ackooij, W., Minoux, M.: A characterization of the subdifferential of singular Gaussian distribution functions. Set Valued Var. Anal. 23(3), 465–483 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. van Ackooij, W., Sagastizábal, C.: Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM J. Optim. 24(2), 733–765 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim van Ackooij.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Ackooij, W., Malick, J. Second-order differentiability of probability functions. Optim Lett 11, 179–194 (2017). https://doi.org/10.1007/s11590-016-1015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1015-7

Keywords

Navigation